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It is commonly believed that neutron stars exceeding the maximum mass limit for stability could
be formed in the aftermath of binary neutron star mergers, enjoying a short life of metastability
before losing centrifugal support and collapsing to a black hole. It is suggested here that a similar
scenario could take place when the remnant’s excess mass is supported by an ultra-strong (& 1017 G)
magnetic field that could be generated during, and shortly after, coalescence. We show that such
‘magnetically supramassive’ neutron stars could stave off collapse and survive for a few years before
their magnetic energy is sufficiently dissipated due to ambipolar diffusion. In addition, we speculate
on multi-messenger signatures of such objects and discuss the robustness of our results against
limitations placed by neutron superfluidity and magneto-thermal evolution.

I. INTRODUCTION

Determining the chemical makeup that defines the
equation of state (EOS) of neutron star matter consti-
tutes one of the key open problems in high-energy as-
trophysics. Matching data from electromagnetic, and
more recently gravitational-wave (GW), observations of
extreme phenomena, such as short gamma-ray bursts
(SGRBs), with theoretical predictions from general-
relativistic magnetohydrodynamics (GRMHD) offers an
invaluable tool in this respect. As evidenced by the
joint GW-GRB event GW170817 detected by Fermi
and the advanced Laser Interferometer GW Observatory
(aLIGO) [1, 2], neutron star mergers can be produc-
tion sites for SGRBs, the prompt-emission and afterglow
light-curves of which reveal unique information about the
nature of the remnant [3–6].

If the merging stars are not too massive, a third, more
extreme neutron star may emerge from the crash site
rather than a black hole. It is generally posited that this
star can have one of three fates depending on its mass, M ,
in relation to the maximum mass (for a given EOS) re-
sulting from the integration of the Tolman-Oppenheimer-
Volkoff (TOV) stellar structure equations, MTOV: (i)
Long-term stability, where the star survives indefinitely,
for M ≤ MTOV; (ii) medium-term metastability for
MTOV < M . 1.2MTOV, where uniform rotation stabilises
the remnant (often termed ‘supramassive’; [7]), or (iii)
short-term metastability for 1.2MTOV . M . 1.6MTOV,
where differential rotation stabilises the remnant (‘hy-
permassive’; [8]). In this Letter we suggest that the rem-
nant neutron star has a fourth option, namely, long-term
metastability, where the collapse is eventually instigated
by core magnetic field decay. Such neutron stars could
be fittingly called ‘magnetically supramassive’.

In particular, the magnetar subclass of neutron stars
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may contain extremely strong magnetic fields within
their stellar cores, which could potentially help stabilise
them against gravitational collapse [7, 9, 10]. Violent
dynamo activity at birth [11], possibly in combination
with the Kelvin-Helmholtz [12] and magneto-rotational
[13] instabilities, may thus facilitate the growth of mag-
netic pressures within the remnant to the point that the
birth mass may non-negligibly exceed MTOV, even with-
out rapid rotation. Following a swift (& seconds) spin-
down phase, the star would then survive on a magnetic-
diffusion timescale on the order of ∼ 1−10 years, depend-
ing on the core temperature, internal field strength, birth
mass, and EOS [14, 15]. Here we provide some analytic
estimates for mass limits and collapse times of magneti-
cally supramassive stars based on magneto-thermal argu-
ments, finally offering some discussion on observational
signatures of such objects, most notably from SGRBs.

II. MAXIMUM MASS OF MAGNETIC STARS

In much the same way that rotational kinetic energy
can help stave off gravitational collapse, so too can mag-
netic energy. The Lorentz force associated with the mag-
netic field contributes an effectively anisotropic stratifi-
cation which, for poloidal fields, drives the star towards
an oblate shape and can work together with the hydro-
static pressure to resist gravity [9, 10]. Microphysical
effects, such as Landau quantization and the spin polar-
ization of neutrons within the stellar core, also start to
influence the bulk properties of the star for ultra-strong
magnetic fields [16]. Overall, there is a secondary stiffen-
ing effect on the EOS for super-Schwinger fields [17], and
even more massive stars can be produced. A rigorous
calculation of the maximum mass sustained by a neu-
tron star under the influence of rotation and/or a strong
magnetic field requires the numerical integration of the
GRMHD structure equations for a given realistic EOS.
Fortunately, for the purposes of this work, this compli-
cation can be avoided and we can instead rely on a far
simpler analytical approach based on energy arguments.

ar
X

iv
:2

10
9.

08
27

6v
2 

 [
as

tr
o-

ph
.H

E
] 

 2
2 

Fe
b 

20
22

mailto:arthur.suvorov@manlyastrophysics.org
mailto:kostas@um.es


2

Consider first the classic, rotationally supramassive
case. The maximum mass of a static configuration
is MTOV, though rotation contributes to the available
energy pool and pushes this limit higher. Assum-
ing a uniformly rotating star, the sum of the gravita-
tional and rotational kinetic energies are Ugrav + Urot =
−3GM2/5λR+ 1

2I0Ω2, for moment of inertia I0 ≈ 2
5MR2

and rotational velocity Ω, where we have introduced the
phenomenological parameter λ to account for EOS and
GR effects (for a uniform Newtonian model, λ = 1). The
maximum mass of the rotating configuration, Mrot, can
then be estimated by considering a star rotating at the
mass-shedding (Kepler) limit, ΩK ≈

√
GMTOV/R3, and

equating the sum of the kinetic and potential energies
of this more massive star with the maximum binding en-
ergy available to a static star. Solving −3GM2

TOV/5λR =

−3GM2
rot/5λR + 1

2I0Ω2
K, we find Mrot = MTOV

√
1 + λ

3 ,

which is in remarkably good agreement with the numer-
ical simulations for λ . 2 [7, 8].

The above procedure can be similarly carried out with
the magnetic energy, Umag = 1

6B
2R3, in place of the ro-

tational energy. Note, however, that B here is not the
surface field strength but rather a volume-averaged in-
ternal field strength, the magnitude of which may be
dominated by the outer-core toroidal field or inner-core
poloidal field. As such, even if a relatively conserva-
tive surface field is realised, Bsurf . 1016 G, the value
of B here could potentially approach the Virial limit,
Bmax ∼ 1018λ−1/2(M/M�)(R/10km)−2 G, depending on
the field topology. We emphasise however that it is un-
clear whether fields of this strength are ever reached in
Nature; even in merger simulations with large (∼ 1015 G)
seed fields, magnetic energies tend to saturate at a few
times 1051 erg [12, 18], implying an upper limit Bmax ∼
6× 1016(Umag/2× 1051 erg)1/2(R/15km)−3/2 G.

However, intense and largely unresolvable magnetic
substructures are prevalent in many studies, and it is
conceivable that greater amplifications could be attained
if finer spatial grids, necessary to fully resolve the Kelvin-
Helmholtz and/or magneto-rotational instabilities, are
employed (see Ref. [12] for a thorough discussion). On
the observational side, there is reasonable evidence that
at least some of the X-ray afterglows seen to follow
many SGRBs are powered by spindown energy injections
from a newborn magnetar [4–6]. In many cases, fittings
within this paradigm favour polar fields Bp, again likely
lower than the internal field strength, that are a few
by 1016 G; in some rare instances though, most notably
GRB 100625A, best-fit values of Bp & 1017 G have been
reported [3]. These estimates however assume perfectly
efficient emissions, and therefore represent upper limits.

Either way, for the maximum magnetic mass we esti-
mate

Mmag

MTOV

=

(
1 +

5λ

18

B2R4

GM2
TOV

)1/2

. (1)

This result is again in reasonable agreement with the nu-

merical calculations. For instance, for a n = 1 polytropic
EOS, Ref. [9] found that the (baryonic) mass increases
from 2.19M� to 2.28M� (i.e., a 4% increase) for a GR
stellar model with radius R = 13.8 km and magnetic
dipole moment µ ≈ BR3/(2

√
grr) = 2× 1035 G cm3 (for

Schwarzschild factor grr). This result, and others for the
same EOS, matches well with the simple formula (1) for
λ . 3. For the APR EOS [19] (which passes constraints
coming from GW170817 [2]), we find instead λ ∼ 1, un-
less B & 1018 G in which case the aforementioned stiffen-
ing results in a better-fit value λ & 2 [9]. Similar results
are found using simulation data from other works for var-
ious EOS, such as Ref. [10]. We therefore consider the
range 0.2 ≤ λ ≤ 5 for demonstration purposes; Figure 1
illustrates the formula (1) in this respect.
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FIG. 1. Maximum mass of a magnetic star as a function
of the volume-averaged magnetic field B, estimated through
Eq. (1), for MTOV = 2.2M� and R = 15 km. The shaded
region (0.2 < λ < 5) should capture most of the uncertainty
related to the EOS and GR gravity (see main text). The
horizontal line represents the maximum mass set by the Virial
limit, Mmax/MTOV ≈ 1.414.

III. MAGNETIC FIELD DECAY AND
COLLAPSE

A magnetic field residing in the interior of a neutron
star can dissipate via the main mechanisms of Ohmic
decay, likely accelerated by Hall drift, and ambipolar
diffusion [14]. For the magnetic field-temperature pa-
rameter space relevant to the core of a newborn neutron
star, the field decay is dominated by ambipolar diffu-
sion. This mechanism involves the drift of the charged
particles (protons and electrons) relative to the neutron
fluid. The magnetic field, anchored to the charged flu-
ids, follows this motion and the induction-generated elec-
tric field leads to magnetic flux transport and field line
straightening. The drift culminates in the release of mag-
netic energy while heating up the star [14, 15].

The characteristic decay time for the magnetic field
reads τamb = L/wamb, where L denotes a typical dis-
tance over which the magnetic field varies and wamb is the
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typical velocity lag between the charged and uncharged
fluids. This lag is determined by the balance between
the Lorentz force and the inter-particle collisional forces.
Typically τamb is broken up into solenoidal and irrota-
tional components associated with the Helmholtz-Hodge
decomposition of wamb, though such a distinction is not
necessary for our simple demonstration. The MHD equa-
tions associated with the system imply that [14]

τamb ≈ 25L2
5B
−2
17 T

2
9 (ρ/ρnuc)

2/3
yr, (2)

where L5 = L/105 cm, B17 = B/1017 G, and T9 =
T/109 K. (Note, however, that since |B|/|∇B| ∝ `−1

for a pure `-pole, L may be lower in the early stages
as the field unknots from a highly-tangled configuration,
as would be expected in a newborn magnetar [11, 13],
thereby accelerating the decay.)

A rigorous treatment of the ambipolar diffusion-driven
decay of the magnetic field involves the numerical evolu-
tion of the system’s coupled GRMHD-thermal equations.
However, and in spite of recent progress [20], such calcu-
lation has not been completed yet. For the approximate
analysis of this paper it is sufficient to work with the
phenomenological evolution law [15]

B(t) = B0

(
1 +

t

τamb

)−1
. (3)

The ambipolar timescale, τamb, can be treated as a con-
stant with fixed values of B and T during the magnetic
field evolution or it can be promoted to a ‘dynamical’ pa-
rameter with a time-varying temperature T (t). At den-
sities ρ ≈ ρnuc, the stellar core is expected to cool via
neutrino emission produced by the modified Urca reac-
tions; the associated temperature law is given by [21]

TmU(t)

109K
=

[
t(yr)

(ρ/ρnuc)1/3
+

(
109 K

T0

)6
]−1/6

, (4)

where T0 ∼ 1011 K is a typical post-merger core tempera-
ture (see e.g. [22]). Examples of magnetic field evolution,
as described by (3), are shown in Fig. 2; these include a
case of static τamb with B = B0 = 3× 1017 G and T9 = 1
as well as two cases of dynamical τamb with T = TmU(t)
and B = (B0, B0/2) (i.e., this last case considers a four-
fold increase in τamb). In all cases the B(t) curve remains
almost flat before its rapid decay at t & τamb.

A reduction of B by a sizable factor should cause
the neutron star’s prompt collapse. The precise collapse
timescale tcol is defined as the point where the birth mass,
Mmin, comes to exceed the maximum sustainable by the
combined (decaying) magnetic and (stable) hydrostatic
pressures, i.e. when Mmag(tcol) = Mmin. Examples of
tcol(B0) are shown in Fig. 3 for Mmin = 1.03MTOV and
different choices of λ and temperature evolution T (i.e.
static or dynamical τamb). The curves show marginal
variation with B0, which can be taken as evidence of a
balance between a faster evolution/larger mass gap for
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FIG. 2. Time evolution of the magnetic field (solid curves)
due to ambipolar diffusion, according to Eq. (3), for different
choices for τamb(T,B); see Eq. (2). Overplotted for reference
is the mUrca temperature TmU (dashed curve) from Eq. (4).
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FIG. 3. The collapse timescale tcol, calculated from
Mmag(tcol) = Mmin = 1.03MTOV, as a function of the ini-
tial magnetic field strength B0. The labelled curves represent
different choices of the EOS parameter λ (λ = 1 and λ = 3
for the lower and upper pair respectively) and temperature
profile (fixed temperature: dashed; mUrca cooling: solid).

higher B0 and a slower evolution/smaller mass gap for
lower B0. According to these results, a magnetically
supramassive star is unlikely to last more than a decade
or so after its birth.

A. Is the collapse inevitable?

The ambipolar diffusion timescale (2) assumes nor-
mal npe matter without the presence of superconducting
protons or superfluid neutrons. Ignoring proton pairing
is well justified as it is expected to be blocked by an
ultra-strong magnetic field B17 & 1 [23]. On the other
hand, nothing can prevent the onset of neutron super-
fluidity which is expected to take place at T9 ≈ 0.5 − 1
(see e.g. [15, 24]). Once the bulk of the core has un-
dergone the transition to the superfluid state after a
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time t = tsf , the partial decoupling between the charged
and uncharged fluids is likely to choke ambipolar dif-
fusion and lead to a markedly longer τamb [25]. This
implies that the timescale (2) should be accurate for
the entire period t . tsf . Assuming (4), the aforemen-
tioned temperature range translates into a time inter-
val tsf ≈ (0.5 − 33) yr, with the high-end limit being
favoured by observations [26]. It is worth mentioning
that the superfluid phase transition could be further de-
layed by Pauli-paramagnetic suppression as a magnetic
field B17 & 0.1 − 1 may prevent the formation of the
singlet neutron pairing state, leaving the weaker triplet
superfluid state as the only possibility [16].

In fact the assumption of a passively cooling neutron
star is not a realistic one; the decaying magnetic field
would act as a heat source itself thus delaying the on-
set of superfluidity. The results of Ref. [15] suggest that
this delay could be as high as a factor 10 − 100, thus
making tsf � tcol for most of the parameter space. A
similar analysis in [27] suggests that ambipolar heating
could balance mUrca cooling at a temperature Tbal .
8× 108(B2

16/L5)1/5 K, likely exceeding the superfluidity-
onset value until B has sufficiently decayed. We can
therefore conclude that neutron superfluidity is unlikely
to prevent the short-term collapse of magnetically supra-
massive neutron stars.

Far more serious could be the implications of neutrino
cooling via direct Urca reactions [28]. This is classified
as a fast cooling mechanism, causing the core tempera-
ture to plummet down to T9 ≈ 1 in a matter of minutes
instead of (approximately) the full year required by the
modified Urca reactions. In such a scenario tsf � tcol,
thus preventing an early-stage collapse of the supramas-
sive star. These direct reactions, however, require that
the Fermi momenta of the protons and electrons exceeds
that of the neutrons, implying a critical proton fraction
xp & 0.1 and an operational density ρ & 4ρnuc [27, 28].
Despite their high mass, magnetically supramassive stars
may not meet this requirement as a result of their rela-
tively large size compared to ordinary neutron stars [9].

IV. OBSERVATIONAL SIGNATURES AND
CLOSING REMARKS

Owing to their extreme field strengths, magnetically
supramassive stars should be especially active during
their relatively short lifetimes. SGRBs with extended
afterglow, which are thought to be (at least partially)
powered by spindown energy injections from a newborn
magnetar [3, 5], are a promising candidate regarding ob-
servational signatures. If indeed a magnetically supra-
massive star was born following a merger, the afterglow
‘plateau’ – an often-observed phase of roughly constant
X-ray flux [12] – should be short-lived because of intense
spin-down, though the luminosity will be exceptionally
high since B is large. Importantly however, if the flux is
abruptly truncated, this would indicate a cessation of the

magnetar’s contribution and a rotationally-supramassive
(or accretion-induced) collapse [4]. In the magnetically-
supramassive case, the magnetar engine will also even-
tually shut off, but the collapse should occur sufficiently
late such that the drop is undetectable. Generally speak-
ing, after an electromagnetic spin-down timescale, τem ∼
50
(
Bp/1016 G

)−2
(ν/kHz)

−2
s for spin frequency ν, has

elapsed, the X-ray luminosity, which traces the spin-down
luminosity up to some efficiency factor, would be ex-
pected to decay quadratically until becoming invisible
due to measurement noise. Prototypical examples in this
class are GRBs 080702A, 100117A, and 100625A, the lat-
ter of which seemingly displayed an especially short-lived
(& 10 s) plateau followed by a power-law decay, and may
have given birth to a magnetar with Bp & 1017 G [3, 6].

Magnetically supramassive stars would be expected to
collapse & years after birth. Once an event horizon in-
evitably comes to cloak the star, field lines will snap, in-
ducing magnetic shocks that can accelerate electrons to
relativistic velocities, producing radiation in the & GHz
band. This mechanism, though considered only in the
context of rotationally supramassive stars, was put forth
as a progenitor for extragalactic fast radio bursts (FRBs)
[29]. We note that the emitted power in a curvature-
radiation scenario scales as B2ν2, and can accommodate
the observed FRB energetics even for slow stars (i.e.,
at times t � τem) if B is large enough. Something of
a ‘smoking gun’ for magnetically supramassive systems
may then be a short-lived, bright plateau followed by a
power-law decay (without an abrupt cutoff after ∼ 102

s) after an SGRB, with a (non-repeating) FRB occur-
ring & years later once collapse sets in. Such a sce-
nario would be difficult to explain with a traditionally
supramassive magnetar (since collapse would set in on
the much-shorter spindown timescale [4]) or a black hole
(since fallback accretion would have long since concluded
[12]).

Late-time X-ray flares are also observed in some after-
glow light-curves, sometimes up to & 106 seconds post
prompt emission [30]. Even at times t � τamb, a non-
negligible amount of energy may be liberated by ambipo-
lar diffusion if B is extremely large and thus, much like
in the case of anomalous X-ray pulsars and soft-gamma
repeaters [11], magnetic dissipation could be responsible
for the triggering of these flares.

Besides their electromagnetic signature, neutron stars
with B17 & 1 magnetic fields are expected to sustain
huge ellipticities (‘mountains’) ε, thus becoming copi-
ous sources of GWs with characteristic amplitude h ≈
4× 10−24(10 Mpc/D)(ε/10−2)(ν/kHz)2 before they have
substantially spun down [5]. Strains of this order may
be detectable by aLIGO or next generation detectors, of-
fering another route for observational constraints. The
quasi-normal mode spectrum of an ultra-magnetised star
would also be significantly shifted relative to that of an
otherwise equal but unmagnetised star [31], and thus the
ringdown profile could be used as an indicator of whether
the system is likely to be magnetically supramassive or
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not. It is also worth noting that to produce a supramas-
sive remnant marginally heavier than MTOV in a coales-
cence, it is likely that the pre-merging stars would have to
be relatively light, M . 1.3M�, which has implications
for GW emission and evolutionary modelling [22].

We conclude with a few remarks about future avenues
on the modelling of magnetically supramassive stars.

Based on our earlier discussion, these should include
more rigorous, coupled magneto-thermal evolutions that
include realistic EOS and superfluidity along the lines of
Refs. [15, 27] and the careful delimitation of the dUrca
reactions’ parameter space. In parallel, future GRMHD
simulations of coalescing neutron stars with their ever in-
creasing resolution should be able to provide an improved
understanding of the possibility of forming such objects.
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