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Wave-optical effects in the microlensing of continuous gravitational waves by star clusters
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ABSTRACT
Rapidly rotating neutron stars are promising sources for existing and upcoming gravitational-wave interferom-
eters. While relatively dim, these systems are expected to emit continuously, allowing for signal to be accu-
mulated through persistent monitoring over year-long timescales. If, at some point during the observational
window, the source comes to lie behind a dense collection of stars, transient gravitational lensing may occur.
Such events, though rare, would modulate the waveform, induce phase drifts, and ultimately affect parameter in-
ferences concerning the nuclear equation of state and/or magnetic field structure of the neutron star. Importantly,
the radiation wavelength will typically exceed the Schwarzschild radius of the individual perturbers in this sce-
nario, implying that (micro-)lensing occurs in the diffractive regime where geometric optics does not apply. In
this paper, we make use of numerical tools that borrow from Picard-Lefschetz theory to efficiently evaluate the
relevant Fresnel-Kirchhoff integrals for n & 102 microlenses. Modulated strain profiles are constructed both in
general and for particular neutron star trajectories relative to some simulated macrolenses.

Keywords: neutron stars, magnetars, magnetic fields, gravitational microlensing, gravitational wave sources.

1. INTRODUCTION

Certain classes of neutron stars are expected to be excellent
sources of continuous gravitational waves (GWs). Anoma-
lous X-ray pulsars and soft gamma repeaters, now widely
recognised as neutron stars of the highly-magnetised vari-
ety (‘magnetars’, Duncan & Thompson 1992), may be de-
formed by magnetic stresses to the point that the result-
ing GW luminosity could be detected by currently operat-
ing ground-based interferometers (Chandrasekhar & Fermi
1953; Goossens 1972; Mastrano et al. 2011). Neutron stars
accreting through Roche-lobe overflow are another strong
candidate, since there remains an observational puzzle as
to why their spin frequencies seem to be capped at . 700
Hz (Patruno et al. 2017); such systems would be expected
to spin-up indefinitely unless stalled by a sufficiently large,
spin-dependent counter-torque. It has been argued that GW
radiation-reaction may be the key agent that limits the ro-
tational growth (Bildsten 1998; Gittins & Andersson 2019;
though see also Patruno et al. 2012; Glampedakis & Suvorov
2021). Regardless, because the GW strain scales quadrati-
cally with the spin frequency, some of the most promising
sources for long-term emissions are those with millisecond
periods, where the resulting GW frequency, fGW, lies in the
∼kHz band (Thorne 1980; The LIGO Scientific Collabora-
tion et al. 2022).

For radiation at these frequencies, gravitational or other-
wise, wave-optical effects are expected to come into play
when encountering solar-mass bodies along or near the line
of sight (Ohanian 1974; Nakamura & Deguchi 1999; Mac-
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quart 2004). Diffractive effects in particular are important
for ML . 102M�(fGW/kHz)−1 (Takahashi & Nakamura
2003; Takahashi et al. 2005), when the wavelength of the
source exceeds the Schwarzschild radius of the (micro-)lens.
For macrolenses consisting of n & 102 stars, we then en-
ter into an intermediate arena between the heavily diffracted
and eikonal regimes, where the overall amplifications may be
non-negligible and ‘beat’ patterns can emerge at the interfer-
ometer due to time delays (Christian et al. 2018; Jung & Shin
2019; Cheung et al. 2021). Although impressive advances
have been made in the numerical implementation of ray-
shooting codes in geometric optics (Garsden & Lewis 2010;
Lewis 2020), such tools are not applicable in this case. Wave-
optical lensing for continuous GWs may be especially im-
pactful because detections would likely take many months of
persistent monitoring using phase-coherent strategies (Lasky
2015; Dergachev & Papa 2021; Suvorov 2021; Soldateschi &
Bucciantini 2021), and the line of sight may cross a number
of interference fringes during this time.

In this respect, Liao, Biesiada, & Fan (2019) have demon-
strated that diffraction and interference effects may, albeit
rarely, show up in continuous GW signals, and that the ampli-
tude and phase modulations arising due to lensing can non-
negligibly affect parameter estimation (see also de Paolis et
al. 2001; Diego et al. 2019; Marchant et al. 2020; Meena
& Bagla 2020; Mishra et al. 2021). However, these au-
thors concentrated on the case of a single point-mass lens,
where a closed-form expression for the lensing flux is avail-
able (Nakamura & Deguchi 1999), thereby allowing for
analytically-tractable computations. While lensing by mul-
tiple stars is highly unlikely for any given Galactic source
(Paczyński 1986b; Jow et al. 2020), it is nevertheless worth-
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while to re-examine the situation for different macro con-
figurations. Generally speaking, the main challenge in per-
forming legitimately wave-optical calculations is the oscil-
latory nature of the relevant Fresnel-Kirchhoff diffraction
integral (Peters 1974); given a phase profile ϕ, the phys-
ical optics calculation involves integrating the exponential
eiϕ over the aperture, which is infinitely oscillatory owing
to Euler’s formula. Feldbrugge, Pen, & Turok (2019), fol-
lowing a mathematical program outlined by Witten (2010),
have recently developed a method based on the application
of Picard-Lefschetz (PL) theory that is useful in this regard
(see also Guo & Lu 2020, for a catalogue of other methods).

In essence, the PL calculation involves analytically contin-
uing the integrand into the complex plane. One then builds
a set of special contours (‘Lefschetz thimbles’) which ulti-
mately form a closed loop, so that Cauchy’s theorem may be
applied. The actual Fresnel-Kirchhoff integral of interest can
then be evaluated by calculating instead some simpler, non-
oscillatory integrals. Each Lefschetz thimble is associated
to a point of stationary phase (i.e., an image) of the original
integrand, thereby connecting back to the more familiar ge-
ometric optics calculation. The main novelty of this paper
is that, by adopting the PL methodology described by Feld-
brugge, Pen, & Turok (2019); Feldbrugge & Turok (2020);
Feldbrugge (2020), we are able to perform wave-optical cal-
culations for ∼kHz GWs lensed by clusters consisting of
& 102 stars. Such a scenario may be relevant when observ-
ing neutron stars located behind particularly dense regions of
the Galaxy with the next generation of detectors (Paczyński
1986b; Liao, Biesiada, & Fan 2019). GWs, unlike light, also
tend to propagate through matter without scattering and ab-
sorption, so that lensing remains nominally important even
through regions that are opaque in the optical.

This paper is organised as follows. In Section 2 we re-
view the theory of continuous GW generation by deformed
neutron stars, outlining the potential impact of wave-optical
lensing. Section 3 is then devoted to the derivation of the
relevant Fresnel-Kirchhoff integral in the thin-lens approxi-
mation, and the setting up of microlens distributions. The
numerical techniques, based on PL theory, are described in
Section 4 (further tests and worked examples are given in the
Appendices), with the results given in Section 5. Some dis-
cussion is presented in Section 6.

2. CONTINUOUS GRAVITATIONAL WAVES FROM
NEUTRON STARS

GWs emitted by a non-axisymmetric system are polarised
according to how momentum (current multipoles) and en-
ergy (mass multipoles) are distributed within the host body
(Thorne 1980). For rapidly rotating neutron stars, several
mechanisms can organically induce large momentum or en-
ergy fluxes within the stellar interior. For instance, a suf-
ficiently strong magnetic field introduces density asymme-
tries within the core and outer layers (Chandrasekhar &
Fermi 1953; Goossens 1972), generating a time-dependent
mass quadrupole moment, conventionally written Ï22 ∝
ν2
?e

2iν?tI0ε for spin frequency ν?, moment of inertia I0, and

triaxial ellipticity ε (Lasky 2015). Mode oscillations, pos-
sibly driven to large amplitudes through secular instabilities
(Andersson et al. 1999), are another often-considered possi-
bility for exciting multipoles of either the current or mass va-
riety (Owen 2010; Friedman & Stergioulas 2013). For con-
creteness we focus on magnetic deformations, where GWs
are emitted at twice the rotational frequency, fGW = 2ν?,
and carry an intrinsic amplitude of (e.g., Lasky 2015)

h0 =
4π2GεI0f

2
GW

c4DOS

≈ 1.1× 10−27
( ε

10−8

)( ν?
500 Hz

)2
(

10 kpc
DOS

)
,

(1)

as measured by an observer a distance DOS from the source.
For a neutron star consisting of normal npe matter, the el-

lipticity is roughly equal to the ratio of magnetic energy to
gravitational binding energy. In terms of a characteristic field
strength B?, one can estimate (Mastrano et al. 2011)

ε ≈ 4× 10−8

(
B?

1014 G

)2(
R?

106 cm

)4(
1.4M�
M?

)2

, (2)

assuming a purely poloidal and dipolar configuration on top
of a hydrostatic Tolman-VII density profile. The inclusion of
higher multipoles, a toroidal field, or employing a different
equation of state can potentially lead to order-of-magnitude
adjustments within expression (2) (Dall’Osso et al. 2009;
Ciolfi et al. 2009). Additionally, for a star whose core con-
tains superconducting protons, ε is amplified by a factor ∼
Hc1/B? (Cutler 2002), where Hc1 . 1016 G represents the
microscopic critical field strength, the exact value of which is
determined by the London penetration depth, amongst other
physical factors (Glampedakis et al. 2011; Lander 2013).
Stars with surface fields B? . 1012 G may therefore still
permit strains of order h0 & 10−27 if their cores are super-
conducting or if they harbour a dominant toroidal field (Su-
vorov 2021). Even in the restricted context of magnetic de-
formations, it is clear therefore that a detection of continuous
GWs from a localised source, which would effectively mea-
sure ε within some tolerance, can yield a significant amount
of information about stellar structure.

2.1. Detectability and relative motion

The characteristic strains (1) are orders of magnitude lower
than those due to the violent merger events that have thus far
been detected. Persistent emissions, associated with magnet-
ically (or otherwise) deformed neutron stars, have the advan-
tage however that signal can be accrued over many cycles.
In particular, if the star houses a mass or current quadrupole
moment with a lifetime that exceeds the observational win-
dow Tobs, continual monitoring leads to an increase in de-
tector sensitivity. In a fully-coherent search, a ground-based
interferometer can detect a signal of amplitude

h0 ≈ 11.4
√
Sn/Tobs (3)

with 90% confidence (Watts et al. 2008), where Sn is the
noise power spectral density of the detector. Although not
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shown here (see, for example, Figure 5 in Soldateschi & Buc-
ciantini 2021), it is likely that observations spanning at least
a year would be necessary to detect continuous GWs from
many of the known sources with existing instruments (see
also Lasky 2015; Suvorov 2021).

Suppose however that the GWs from the system were
lensed en route to the detector. In the case of burst-like
signals associated with mergers, for example, where the
bulk of the measurable GW luminosity is emitted within a
time window spanning a few seconds, relative motion be-
tween the lens and source is negligible. Still, wave-like
effects are likely to be important here because the source
frequency sweeps (‘chirps’) through a wide band, and the
lensing-induced amplification is an oscillatory function of
fGW (Nakamura & Deguchi 1999; Takahashi & Nakamura
2003; Christian et al. 2018).

By contrast, while continuous GWs are expected to be
roughly monochromatic (though see below), the relative mo-
tion between the lens and source cannot be ignored when
considering observational windows spanning some months.
For a phase-coherent search lasting & one year, the neutron
star would have travelled a (relative) distance of ∼ 1015 ×
(v/300 km s−1)(Tobs/ yr) cm, where v = 300 km s−1 is a
typical transverse velocity for a millisecond pulsar (Hobbs
et al. 2005). This distance, while negligible compared to
DOS ∼ 10 kpc, comfortably exceeds the Einstein radius as-
sociated with a solar-mass microlens, viz.

RE ≈
√

4GML

c2
DOLDLS

DOS

= 6.7× 1013

(
ML

M�

)1/2

cm,

(4)

for a lens located DOL = 5 kpc from the observer and a fur-
ther1 DLS = 5 kpc from the source. In rare cases, the emit-
ter may thus cross multiple Einstein rings over a long Tobs
when located behind particularly dense regions of the Galaxy
(see de Paolis et al. 2001; Jow et al. 2020, for some rate es-
timates). Crossing interference fringes will lead to modula-
tions of the GW signal, and could noticeably affect parameter
estimation in the event of a detection, depending on the loca-
tion of the neutron star and its environs.

Moreover, wave-optical lensing will generally cause the
phase of the signal to drift over time. This may be prob-
lematic for phase-coherent GW searches, as matched filter-
ing generally requires the (noisy) detector output, multiplied
by a template waveform, to remain in phase with the sig-
nal to within . 1 rad (e.g., Jones 2004). This problem is
well known in the case of searches directed at sources within
active binaries, where the GW frequency can drift due to
accretion-induced spin evolution and it is necessary to anal-
yse the signal semi-coherently over segments shorter than the
full Tobs (Dreissigacker et al. 2018). The spins of isolated

1 We ignore cosmological corrections to all distance quantities since z � 1
for the sources considered here.

neutron stars may also wander over ∼ year-long timescales
for a variety of reasons (e.g., glitches); see Suvorova et al.
(2016) for a discussion. One aspect we can explore with
wave-optical calculations is, for a given macrolens, the max-
imum interval over which matched filtering can be reliably
applied (see Sec. 5).

3. WAVE-OPTICAL MICROLENSING OF
GRAVITATIONAL WAVES

Here we briefly review the wave-optical theory of gravi-
tational (micro-)lensing of GWs emitted by a point source,
closely following Takahashi & Nakamura (2003) and Mac-
quart (2004). Working within the weak lensing regime, we
adopt the ‘Newtonian’ spacetime metric

ds2 = g(L)
µν dx

µdxν = − (1 + 2U) dt2+(1− 2U) dx2, (5)

where U(x) � 1 denotes the gravitational potential asso-
ciated with the macrolens and we have temporarily set the
speed of light, c, to unity. At the linear level, the macro po-
tential U is simply the superposition of potentials Uk associ-
ated with each microlensing body k, i.e., U =

∑
k≤n Uk for

n microlenses. GWs emitted by the source are described by
a vacuum perturbation h on top of the lensing background,
viz. gµν = g

(L)
µν + hµν , which satisfies (Isaacson 1968)

0 = ∇α∇αhµν + 2R
(L)
αµβνh

αβ +O(h2), (6)

whereR(L)
αβµν is the Riemann tensor associated with g(L)

µν and
we have employed the Lorentz gauge (∇νhνµ = 0 and hµµ =
0). For the cases considered here, the GW wavelength is tiny
relative to the typical radius of curvature associated with the
background, and we can safely drop the Riemann tensor term
in equation (6). In this instance, the equations of motion for
each component of h are individually equivalent to a Klein-
Gordon equation for a scalar field φ(t,x) (Peters 1974). The
leading-order problem thus reduces to finding solutions to

0 =
(
∇2 + ω2

)
φ− 4ω2Uφ, (7)

where, through a slight abuse of notation, we have taken
out the time dependence via φ = eiωtφ with ω = 2πfGW.
Finally, equation (7) can be solved using Kirchhoff’s theo-
rem, thereby defining the Fresnel-Kirchhoff diffraction inte-
gral associated with the wave optics of GW lensing (Taka-
hashi et al. 2005),

φ(x) = φ(0)(x)−ω
2

π

∫
d3x′

eiω|x−x
′|

|x− x′|
U(x′)φ(0)(x′), (8)

where φ(0) solves the homogeneous (U = 0) version of equa-
tion (7). Expression (8) can also be obtained from a path
integral (Nakamura & Deguchi 1999), in line with the expec-
tation that the wave-optical equations can be derived from
quantum-mechanical arguments; see also Feldbrugge, Pen,
& Turok (2019) for a derivation in the case of electromag-
netic radiation, where the resulting equation(s) are practically
identical.
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3.1. Thin-lens approximation

As it stands, the Fresnel-Kirchhoff integral (8) contains a
non-local Green’s function. We introduce the thin-lens ap-
proximation to reduce the dimensionality of the problem and
to eliminate the unwieldy denominator term; this amounts
to projecting each microlens onto a single 2-dimensional
screen, the mathematical details of which can be found, for
example, in Takahashi et al. (2005). The end result is that
the amplification factor, F = φ/φ(0), can be written as [see
equation (2.11) in Nakamura & Deguchi (1999)]

F (xs) =
4GML

c3
fGW

i

∫
d2x exp [2πifGWtd(x,xs)] , (9)

where x (lens-plane-projected coordinates) and xs (source-
plane-projected coordinates) are expressed in units of

ξ0 = RE and η0 =
DOS

DOL
RE , (10)

respectively, and the Einstein radius RE is defined in expres-
sion (4). For a lens that is equidistant between the source and
the observer, we have η0 = 2ξ0. The (normalised) time de-
lay td, up to a constant factor, is a sum of the geometric and
Shapiro delays,

td(x,xs) =
4GML

c3

[
1

2
|x− xs|2 + ψ(x)

]
, (11)

where ψ(x) is the dimensionless deflection potential (i.e., the
projection of U onto the 2D lens screen). For a collection of
n point lenses, we have

ψ(x) = −
∑
k≤n

(
Mk

ML

)
log

√
(x− xk)

2
+ (y − yk)

2
, (12)

where the bodies of mass Mk are located at (xk, yk) on the
lens plane.

We close this section by noting that in microlensing cal-
culations, one generally also includes convergence (κ) and
shear (γ) components related to ‘off-screen’ elements within
the time-delay function (11) (see, e.g., Paczyński 1986a;
Meena & Bagla 2020; Lewis 2020). The former optical
scalar accounts for magnifications due to a smooth mass
component (e.g., a background Galactic contribution) while
the latter is induced by large-scale anisotropies (e.g., tidal
distortions). While the formalism presented in the next sec-
tion can also be used to study cases with non-zero conver-
gence or shear, we defer such a calculation to a future work.

3.2. Star clusters

For sources out to & 10 kpc, the likelihood that any emit-
ted GWs non-negligibly interact with the gravitational field
of a perturber en route to Earth is relatively low: the lensing
probability by stars for a source within the bulge may reach
a few times 10−6 (Paczyński 1986b; de Paolis et al. 2001).

If, however, a non-negligible fraction2 (≈ 10−5, Liao, Biesi-
ada, & Fan 2019) of the∼ 109 neutron stars within the bulge
emit appreciable GWs, microlensing events may conceivably
be observed by the next generation of interferometers over
long Tobs. Furthermore, Kıroğlu et al. (2021) have recently
suggested that for neutron stars in the globular clusters 47
Tuc and M22, ‘self-lensing’ (i.e., lensing by a fellow mem-
ber of the cluster) rates may be as high as 2× 10−3 yr−1 and
4 × 10−5 yr−1, respectively. The single-lens scenario has
been considered in detail by Liao, Biesiada, & Fan (2019),
who made use of the fact that the Fresnel-Kirchhoff inte-
gral can be evaluated analytically in the case of an individ-
ual point-mass lens (see Appendix B). Here, we generalise
their scenario by considering instead macrolenses consisting
of n & 102 stars at various distances from the line of sight.

ψ(x,y)

-��

-��

-��

-��

-��

-��

Figure 1. Distribution of n = 25 microlenses (black dots) over the
lens plane with a total area A = 2500R2

E . The colour scale depicts
the potential ψ from equation (12), with redder shades indicating a
stronger (i.e., less negative) value.

For concreteness, we consider two distinct cluster distri-
butions in this work. Defining an ‘optical depth’, τ , as the
ratio of the area covered by the individual Einstein rings to
a fiducial screen area A, expressed in units of RE , we have
τ ≈ nπ/A. If we consider a 50 × 50 screen (say), we then

2 Woan et al. (2018) have provided population-based evidence that all mil-
lisecond pulsars house a minimum ellipticity of ε ∼ 10−9, comparable to
expression (2), a fraction fl of which may be observable in GWs. Although
dependent on recycling and star formation assumptions, Zhu et al. (2015)
estimate that the millisecond neutron star birth rate is ∼ 10−4 yr−1 from
the combined core collapse and accretion-induced collapse channels. A
rough estimate for the number of observable sources is then ∼ 106 × fl,
further multiplied by the fraction of the source’s lifetime (.Gyr, Zhu et al.
2015) relative to the age of the Milky Way.
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ψ(x,y)
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Figure 2. Similar to Fig. 1, though for n = 250 microlenses dis-
tributed within the same area.

have that τ ≈ 10−3n. We consider two cases, one with
n = 25 (τ ≈ 0.03), henceforth the low optical depth case,
and n = 250 (τ ≈ 0.3), which we call the high optical depth
case. On a practical level, these two individual distributions
are constructed by plucking points from bivariate Gaussians
with relatively large variances over a disc of diameter 50RE .
For each of these two cases, we used the available sampling
functions in MATHEMATICA® to define the macrolens. The
resulting initialisations are shown in Figures 1 and 2, respec-
tively. In these Figures, the overlaid colour scale shows the
projected potential ψ(x) from expression (12), which is nat-
urally stronger by a factor ∼ 10 in the higher τ case.

It should be stressed that the distributions considered here
are not meant to represent any particular astrophysical sys-
tem. They are constructed primarily to illustrate the math-
ematical machinery and to qualitatively explore what the
wave-optical impact of lensing by n � 1 stars may be for
continuous GWs in the ∼kHz band.

4. PICARD-LEFSCHETZ APPROACH

As mentioned in the introduction, evaluating expression
(9) is challenging because the integrand oscillates an infi-
nite number of times over the aperture (real plane). Standard
numerical methods that involve finite cutoffs, for example,
fail to return an adequate evaluation because, depending on
whether one truncates at a trough or a crest of the time-delay
td, the integral will either be under- or over-estimated, re-
spectively. To make progress, we make use of the ideas be-
hind PL theory, as described by Feldbrugge, Pen, & Turok
(2019) (see also Diego et al. 2019; Guo & Lu 2020, for alter-
native approaches).

We begin by introducing polar coordinates, x = r cos θ
and y = r sin θ, so that we have only one (semi)-infinite in-
terval (0 ≤ r < ∞) to consider. The transformed integral
is evaluated for fixed values of θ; given a set of values for

F (xs, θ), we can eventually build-up the full 2D integral us-
ing Simpson’s (or some other standard) method because the
angular limits are finite. The PL strategy begins by extend-
ing r into the complex plane (i.e., analytically continuing the
variable), viz. r → Re(r)+ i Im(r), effectively doubling the
number of (real) coordinates. Such an extension allows us to
then deform the original integral into the complex plane. In
particular, provided that the exponent td is analytic (cf. Sec.
4.1), integrals around closed, complex contours will vanish
by Cauchy’s theorem, i.e.,∮

Γ

e2πifGWtd(r,θ,xs)dr = 0, (13)

around any closed loop Γ ⊂ C (again, for a fixed θ). If we
were to thus design a contour consisting of multiple segments
γi such that Γ =

∑
i γi, the first of which (γ1) is the non-

negative real line, we can effectively evaluate the original in-
tegral (9) by summing the remaining integrals over γi≥2.

The key observation now is that there is freedom in choos-
ing these contours. Noting that the main issue with evaluat-
ing the original integral is its oscillatory nature, we proceed
by choosing the contours precisely such that the oscillations
are damped out as much as possible, so that standard numer-
ical methods may be applied.

In general, the function td can itself be expanded into
real and imaginary components, conventionally written
as itd(r, θ,xs) = h(r, θ,xs) + iH(r, θ,xs). Starting
from some finite radius, we trace a Morse flow γ(λ) =
{Re[r(λ)], Im[r(λ)]} according to (Witten 2010),

dγi

dλ
= −Gij ∂h

∂γj
, (14)

where Gij is a metric on the complex plane3 and we have
introduced an affine parameter λ which labels the position
along the curve. Along this particular contour, we have that

dH

dλ
=
dγi

dλ

∂H

∂γi

= −Gij ∂h
∂γj

∂H

∂γi

= 0,

(15)

where the last equality holds because of the Cauchy-Riemann
equations. In effect, the above result demonstrates that the
oscillatory portion of the integrand is constant along a Morse
flow, and can thus be pulled outside of the integral. Fur-
thermore, the Morse flow is also a contour of steepest de-
scent in the sense that h is always decreasing, dh/dλ =
−
∑
j(∂h/∂γ

j)2. This is the power of the PL approach:
not only are oscillations neutralised, the real portion also de-
creases as quickly as possibly and truncation can be exacted

3 Throughout this paper, we consider the Kronecker delta, Gij = δij , by
topologically associating C with R2. In some cases it may be advantageous
to consider different metrics (Witten 2010), but we ignore such generalisa-
tions here for simplicity.
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Figure 3. Graphical representation of Cauchy’s theorem (13) as ap-
plied in the evaluation of the Fresnel-Kirchhoff diffraction integral
(9). The integral of interest (0 ≤ Re(r) <∞) lies along (the nega-
tive of) γ1, shown in red, though two additional lines are introduced
to form a closed contour. If the original segment contains branch
points s1, . . . , sj , these are exorcised from the domain to preserve
analyticity (see Sec. 4.1). A Lefschetz thimble is built by flowing
in the direction defined by the Morse equation (14), until a point
of stationary phase (i.e., an image, labelled p1) is reached. At this
point, the velocity of the flow effectively tends to zero, and it is
necessary to introduce a perturbation to continue the thimble. This
process of flow and perturbation is continued until all images along
the route, the last of which is pk, are moved past. The overall sum of
these flows defines the contour γ3 (green), which is then connected
back to the real line through an arc (γ2; blue). This latter integral
vanishes, in many cases of interest, by Jordan’s lemma.

at low values of Re(r) without sacrificing accuracy (Witten
2010; Feldbrugge, Pen, & Turok 2019).

In general, however, there will not be a single Morse flow
over the entire domain, but rather it is necessary to consider a
sequence of such flows. The reason for this is that if a point of
stationary phase is encountered, the right-hand side of equa-
tion (14) vanishes, implying that the flow halts as the velocity
dγ/dλ tends to zero. It is therefore necessary to attach a flow
to each individual image, where the beginning (i.e., initial
condition) of each segment corresponds to the end-point of
the previous plus a small perturbation. Each such segment is
referred to as a Lefschetz thimble (Feldbrugge, Pen, & Turok
2019; Jow et al. 2020, 2021), the overall sum of which de-
fines the contour we wish to integrate along; for mathemati-
cal details concerning the well-posedness of such flows, we
refer the reader to Witten (2010).

In summary, we design a 3-component contour Γ by se-
quentially flowing from the origin according to (14) (γ3),
eventually joining to the real axis by introducing an arc (γ2),
which then connects back to the origin (γ1), defining a closed
contour. Furthermore, the integral along the arc γ2 vanishes,
under reasonable assumptions, by Jordan’s lemma. Some ad-
ditional numerical details are given in the next section, while
a worked example pertaining to the generalised Fresnel inte-

gral is given in the Appendix A. Figure 3 illustrates the core
ideas involved in the PL evaluation.

4.1. Numerical implementation

In practice, there are several numerical obstacles encoun-
tered when applying the above ideas. The first major dif-
ficulty concerns the fact that the Morse flow terminates at
points of stationary phase. After performing the complex de-
composition of the integrand, we locate the roots, parame-
terised by the angle θ and the screen parameters xs, of the
first derivative of td plus the logarithm of the Jacobian4. This
entails solving high-order polynomial equations, which we
achieve through an exhaustive search using different initial
guesses and the Newton-Raphson method within MATHE-
MATICA®. Once an image is encountered, the flow velocity
is then artificially perturbed, γ′(λ) → γ′(λ) + ε, to ‘kick’
the flow onto the next thimble. In practice, we set ε = 10−4.

Not all images are of relevance, however, since some may
be topologically disconnected from the overall flow (see Ap-
pendix A). For example, if a saddle occurs at a place of neg-
ative real component [Re(p) < 0], the flow cannot encounter
it and the associated thimble is irrelevant. Classifying such
irrelevant images and related Stokes transitions is in general
a difficult problem; see Feldbrugge, Pen, & Turok (2019) for
a thorough discussion. We employ something of a trial-and-
error approach in this paper, where images are flowed from,
but only connected (relative to the origin) components are
kept to ensure topological continuity.

The root solver is initialised over a grid of θ and xs val-
ues, and a set of thimbles (in r) is then constructed at each
grid point. For each figure produced here, 512 angular steps
are used, i.e., a spacing of 2π/∆θ = 2π/512 is used. The
results obtained with this resolution differ by at most ∼ 1%
from those obtained with 256 steps. Some additional tests on
convergence with respect to resolution are given in Appendix
B. Generally, higher radiation frequencies require larger ∆θ
(by a factor ∼ f/fGW) because the integrand varies more
rapidly, and thus ∼ 128 steps is already adequate for fre-
quencies . 1kHz. Simpson’s method is then used to sum the
θ-integrals together to build the full, 2D diffraction integral
(9).

The Morse flow equations (14) are sequentially solved
using a Runge-Kutta method up to some maximum radius
Re(r). Formally speaking, this radius must extend to infin-
ity, else Cauchy’s theorem (13) cannot be applied. However,
because the Morse flow is also a contour of steepest descent,
high accuracy can be achieved even with relatively early trun-
cations that depend on xs; see Appendix A.

Finally, it is important to note that the function td is
not analytic over the complex plane, as the ψ piece in-

4 Such a step is not strictly necessary, as one could instead monitor the flow to
check if an image has been met (i.e., if the velocity falls below a threshold),
and automatically issue a perturbation in the manner described to continue
the thimble. For the n . 250 cases considered here, this root solving stage
is relatively inexpensive, though for n� 102 a subroutine approach would
be faster.
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troduces logarithmic singularities at each microlens posi-
tion (rk cos θk, rk sin θk). This is a problem firstly because
Cauchy’s theorem cannot be strictly applied for θ = θk,
though small arcs around the branch points rk can be con-
structed to restore analyticity if such an angle is within the
numerical grid. Additionally, the flow tends to infinitely wind
around singular points (i.e., the velocity blows up), causing
the integral to diverge. We have explored several possibilities
for tempering the singularities:

• Introducing an additional n − 1 lens planes can cir-
cumvent the appearance of more than one singularity
on any given plane, as discussed by Feldbrugge (2020)
(see also Ramesh et al. 2021). In particular, if each mi-
crolens resides on a different plane, screen-adapted co-
ordinates can be used to center each individual singu-
larity away from the relevant regions, so that it may be
ignored. This approach introduces considerable com-
putational demand however, as the Fresnel-Kirchhoff
integral effectively becomes 2n dimensional.

• Various regularisation techniques are possible, includ-
ing (i) approximating ψ near the singularities by a dif-
ferent function that is regular there (cf. Christian et al.
2018; Guo & Lu 2020), and (ii) cutting out regions
of some size surrounding the singularities. These ap-
proaches can be difficult to tune however because if too
much of the contour is cut, or if ψ is poorly approxi-
mated, significant errors can be introduced.

• In the building of the total contour γ3 and applying
(13), it is not necessary that the entire portion (or even
any portion) be a Morse flow. Therefore, if singulari-
ties lie within the Morse-constructed contour, one can
deform the path to restore analyticity, as is typically
done when computing inverse Laplace transforms, for
example. These deformed segments could be fittingly
called ‘suboptimal’ thimbles.

A thorough exploration of the above possibilities lies be-
yond the scope of this paper. Nevertheless, the third option
is employed here for concreteness, as some testing with low
n cases suggests the results agree with the multi-plane ap-
proach to within a few percent. Since it is only ever necessary
to suboptimally flow over short segments, the oscillations in-
troduced are not fatal for the numerical method.

5. RESULTS

Having introduced the PL approach, we are now in a posi-
tion to evaluate expression (9) for the microlens distributions
described in Sec. 3.2, i.e., for a sparse cluster (Sec. 5.1) and
a dense cluster (Sec. 5.2).

5.1. Low optical depth

Figure 4 shows the intensity pattern, as a function of the
normalised screen parameters xs and ys, associated with the
low-optical depth microlens distribution shown in Fig. 1,
where we have fixed fGW = 1 kHz. Figure 5 instead shows

|F|2
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1.6

1.8

Figure 4. The intensity profile, |F (xs)|2, associated with the grav-
itational potential shown in Fig. 1 for fGW = 1 kHz. Hotter shades
indicate greater amplifications. The resolution is 110× 110 (cells).
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Figure 5. Similar to Fig. 4 though for fGW = 2 kHz.

the same intensity profile but for fGW = 2 kHz, i.e., for a
star spinning twice as quickly. Although no neutron stars
with such a high rotational velocity have been directly ob-
served, this latter case provides a useful comparison to il-
lustrate how the radiation frequency impacts on the overall
intensity map. Furthermore, theoretical models of accretion-
induced spin-up allow, in principle, for the rotation rate to
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reach this level (e.g., Glampedakis & Suvorov 2021), and
GW searches at this frequency range have been conducted
(Dergachev & Papa 2021).

For fGW = 1 kHz, the maximum intensity over the screen
is relatively low, |F |2max = 1.8, owing primarily to the sparse
nature of the microlens distribution and, hence, the weakness
of the bulk gravitational potential U . For the faster star with
fGW = 2 kHz, we instead have |F |2max = 2.3. Monotonicity
in |F |max as a function of frequency is generally expected,
since as fGW → ∞ we approach the geometric optics limit,
where the amplification becomes formally infinite along the
caustic surface(s) where x + 1

2∇xψ = 0 (Jow et al. 2021).
To put these maxima in perspective, consider the case of a
single solar-mass lens, where one finds maximum values of
|Fn=1|2 = 1.21 and |Fn=1|2 = 1.44 for fGW = 1 kHz and
fGW = 2 kHz, respectively [see equation (B6)]. These max-
ima occur when the source is oriented directly behind the per-
turbing body, i.e., at (xs, ys) = (x1, y1). It is unsurprising
therefore that the maxima in our simulations occur when the
source aligns itself behind the centre of mass of the densest
mini-cluster located at (xs, ys) ≈ (0, 15); see Fig. 1. In par-
ticular, a collection of point masses in close proximity to one
another generally behave as one larger lens around the centre
of mass, and since |F | scales with ML, as can be seen from
(9), the amplification is larger there. In the local vicinity (i.e.,
within a few Einstein radii) of isolated stars in our distribu-
tion, such as at (xs, ys) ≈ (−20, 0), the intensity strongly
resembles that of the single point-lens case (Liao, Biesiada,
& Fan 2019; Meena & Bagla 2020).

The oscillatory nature of the intensity along any given line
is also the hallmark of interference, as expected in a wave-
optics calculation. The variability is more extreme in the
higher frequency case in Fig. 5, as the dimensionless ex-
ponent fGWtd varies over length-scales exactly half as long.
The emergence of interference fringes is also more obvious
in this case, especially surrounding isolated members of the
cluster, e.g., near (xs, ys) ≈ (−20, 0). The bulk influence is
minimal in the vicinity of these regions, and the amplification
roughly matches the analytic profile for the single lens case
described above, as does the spacing between interference
fringes computable from the Fourier spectrum (Nakamura &
Deguchi 1999). For lower GW frequencies, the amplitudes
of the oscillations become virtually invisible since the wave-
length is so long that the GWs hardly experience the lens,
implying that lensing by stellar-mass bodies is unimportant
for ‘ordinary’ neutron stars with ν? . 102 Hz.

To better illustrate the wave-like nature of the Fresnel-
Kirchhoff integral, we consider also flux, |F (t)|2, and phase,
θF (t) = −i ln[F (t)/|F (t)|], variations along a hypothetical
trajectory of the source. To this end, suppose that the neu-
tron star begins at the origin (xs, ys) = (0, 0) at t = 0, and
then moves, relative to the macrolens, in the +ys direction
with velocity v = 600 km s−1; a value not unreasonable for
millisecond pulsars (Hobbs et al. 2005). (Note, however, that
a smaller v but longer Tobs or DOL yields the same qualita-
tive picture). Within a year, the star therefore travels ∼ 14η0

[see equation (10)], crossing a large number of interference

fringes. Figures 6 and 7 show the 1D variations in flux and
phase, respectively, experienced along this path as a function
of time, where we implicitly ignore variations in DOS. The
red (blue) data points correspond to fGW = 1(2) kHz, with
the size of the symbols roughly characterising the error bars
present in the calculation (. percent level).

∘-∘-∘ fGW=1kHz

∘-∘-∘ fGW=2kHz
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Figure 6. The flux modulation, |F (t)|2, observed in the case of a
source moving in the +ys direction relative to the origin at t = 0 for
the microlens distribution shown in Fig. 1. The red (blue) symbols
correspond to fGW = 1(2) kHz, with their size roughly representing
the maximum level of numerical error present in the calculation.
The speed of the neutron star is taken to be v = 600 km s−1, so
that it crosses ∼ 14η0 per year.
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Figure 7. Similar to Fig. 6, though instead showing the phase drift
θF = −i ln(F/|F |), offset such that θF (t = 0) = 0.

The oscillatory nature of the modulation is evident in the
flux, especially near t = 0 where the source is caught be-
tween two neighbouring elements of the cluster (the origin in
Fig. 1). In regions of low density, i.e., at early or late times,
the fGW = 2 kHz case oscillates roughly twice as often, as
expected from the relative decrease in spacing between inter-
ference fringes. The maximum flux achieved by the higher-
frequency case is greater than in the lower frequency case by
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∼ 25%, in accord with Figs. 4 and 5. These maxima are
achieved after approximately one year of travel time in this
setup (or two years with v ∼ 300 km s−1), whereupon the
neutron star enters into the densest region shown in the top
half of Fig. 1.

Similar oscillatory patterns are observed in the phase,
which covers a wide range of values (−2 . θF . 1.5) over
Tobs. Because phase drifts exceeding a sizeable fraction of
unity are likely to inhibit a fully coherent search (Jones 2004;
Dreissigacker et al. 2018), variations on the order seen in Fig.
7 are potentially detrimental for detection prospects, despite
the flux enhancement (Fig. 6). Within ∼ 6 (3) months, the
phase wanders by more than 0.3 radian for the fGW = 1(2)
kHz source in this scenario, though the gradient dθF /dt in-
creases more rapidly in the dense parts of the cluster and co-
herence is lost at a faster rate. As such, it is likely that the
data would need to be analysed semi-coherently in this sce-
nario over (at most) ∼ month-long segments, especially in
the higher frequency case, even in the absence of (accretion-
induced or otherwise) spin wandering. A thorough examina-
tion of the trade-off between lensing-induced amplification
and decoherence lies beyond the scope of this work; we re-
fer the reader to Suvorova et al. (2016); Dreissigacker et al.
(2018) for a comparison between fully- and semi-coherent
sensitivities. Given a lens model however, such phase errors
may be corrected for in the template waveform using the PL
methodology described here. Either way, issues related to
phase modulation may be further compounded by the Earth’s
diurnal and orbital motions if the sky location or the relative
velocity of the source is poorly constrained.

5.2. High optical depth

Similar to the previous section, Figure 8 shows the inten-
sity pattern with fGW = 1 kHz, as a function of the screen
parameters, for the n = 250 case shown in Fig. 2. Because
ψ is everywhere larger by a factor ∼ 10 than in the previous
case, and more importantly because the distribution is highly
concentrated around the origin, the bulk magnifications in the
heart of the cluster are considerably larger (|F |2max = 73). By
contrast, the analytic formula (see Appendix B) for a point-
mass lens with ML = 250M� gives |Fn=1|2 = 97 at the
origin for the same radiation frequency. For n & 102 and
the Gaussian distributions we use, the overall mass density
on the screen appears similar to that of a grainy sphere with
ψ decaying with radius as a power-law. Over- and under-
dense regions in the magnification profile are clearly visible
however even for n = 250, especially at (xs, ys) ≈ (2,−2)
where there is angle-dependent structure within the second
peak ‘ring’. Interference fringes are also abundant, as can
be seen from the network of graininess near the origin that
extends out to |xs| . 20. Overall, the intensity profile is
compactified over the screen relative to the n = 25 case; in
the limit n → ∞, ψ tends to that of a point-lens with ever-
growing ML (Nakamura & Deguchi 1999).

To better visualise the oscillations above the ambient con-
tribution, suppose that the source moves in the +ys direction
with velocity v = 300 km s−1 (or greater v and proportion-
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Figure 8. Similar to Fig. 4, though for the high optical depth case
shown in Fig. 2. The (logarithmic) resolution is 100× 100 (cells).
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Figure 9. Similar to Fig. 6, but for the high optical depth dis-
tribution shown in Fig. 2. The source velocity is taken to be
v = 300 km s−1 in the +ys direction. The numerical errors roughly
match those of the n = 25 simulation (. percent level), though ap-
pear smaller due to the logarithmic scaling of the vertical axis.

ately contracted time axis). Similar to Fig. 6, the variation
in flux for the n = 250 cluster is shown in Figure 9, where
the red (blue) symbols correspond to fGW = 1(2) kHz. The
emergence of interference fringes is readily apparent as the
flux begins at a maximum as the line of sight intersects with
the densest region at the origin, descends to an order-unity
trough after . 2(1) months in the fGW = 1(2) kHz case, and
then rises on a similar timescale to reach a second peak. Each
subsequent peak after the first, the total number of which is
doubled in the higher frequency case as expected, is gener-
ally of lower amplitude because the stellar density decreases
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as a function of radius (see Fig. 2). This pattern is not mono-
tonic however, especially around t ∼ 4 months for the 2 kHz
case where only a mild peak is reached (|F |2 = 4), because
the lens distribution is grainy. In this case, the phase drifts
are so extreme that coherence is likely to be lost even over
timescales of ∼ weeks. Once the line of sight encounters
only the outskirts of the cluster after∼ 1.5 yr, the flux closely
resembles that seen in Fig. 6, though oscillates more fre-
quently as there are a greater number of interference fringes
produced by the microlenses.

5.3. Implications for parameter estimation

Unlike in the case of a merging binary, where the bulk of
the GW luminosity is produced within a few seconds, contin-
uous GW emissions from a deformed neutron star are longer
lived – potentially persisting for its entire lifetime – though
much fainter; see equation (1). With present-day (future)
instruments, it is likely therefore that a detection of these
sources requires monitoring for a year (month) or more (Su-
vorov 2021; Soldateschi & Bucciantini 2021). If the line of
sight linking the neutron star to the detector intersects with
a dense cluster during the observation, lensing effects may
modulate the strain, as explored in Figs. 6 and 9. What im-
pact could this be expected to have on parameter estimation?

For magnetic deformations, the gravitational waveform is
expected to have a sinusoidal profile of the form h(t) ∼
h0 sin(2ν?t) plus some subdominant harmonics. The lensed
waveform will be similar but with a time-dependent and com-
plex prefactor, so that the signal is amplified by a real factor
while its phase is shifted. Because the variations in h(t) are
much more rapid than the interference-induced variations in
F (t), it may be possible to disentangle the effects of lens-
ing via ‘beat’ patterns (Jung & Shin 2019; Meena & Bagla
2020; Cheung et al. 2021). At the simplest level however, we
note that only mean values for the (upper-limit) quadrupole
moments of neutron stars are typically reported from search
efforts (Dergachev & Papa 2021; The LIGO Scientific Col-
laboration et al. 2022). This is because the coherent nature
of continuous GW-searches necessitates that averaging pro-
cesses between individual interferometers be carried out to
properly subtract noise (Jaranowski et al. 1998; Owen 2010).
As such, a detection of the mean strain 〈h0〉 implies that the
true strain would be lower by a factor 1/〈|F |〉, where the an-
gled brackets denote a statistical average over Tobs. For small
clusters, the amplification will not exceed ∼ 20% or so (see
Fig. 6), implying that, since h0 ∝ B2

? , the difference in the
B-field estimate would likely be no more than ∼ 10%. For
n � 25, the amplifications could potentially be much larger
(see Fig. 9 and Mishra et al. 2021).

The signal-to-noise ratio (SNR) of the system, given by
(Jaranowski et al. 1998)

SNR '

√
2

Sn(fGW)

∫ Tobs

0

[h(t)2]dt, (16)

may non-negligibly increase for large amplifications. Con-
sidering the trajectory defined within Fig. 6, for example, we

estimate that the relative increase in the SNR due to lensing
for fGW = 1 kHz and Tobs = 2 yr reads

SNR(F 6= 1)

SNR(F = 1)
≈

√√√√∫ Tobs

0
|F (t)|2h2

0 sin2(fGWt)dt∫ Tobs

0
h2

0 sin2(fGWt)dt

= 1.13.

(17)

For the first Tobs = 1 yr, we find instead SNR(F 6=
1)/SNR(F = 1) = 1.07. While these SNR increases are
marginal, they could be sufficient to propel an otherwise bor-
derline source into the detectable threshold (Lasky 2015). As
seen in Fig. 7 however, these increases may be offset by the
fact that coherence is lost due to lensing-induced phase wan-
dering. Depending on the gradient dθF /dt, it may be neces-
sary to break the data into many shorter segments, thereby ac-
tually reducing the overall sensitivity (Suvorova et al. 2016;
Dreissigacker et al. 2018). For greater values of the total lens-
ing mass over a fixed area, we generally find that the SNR
increase is higher.

For large SNR (& 10), parameter-estimation errors that
may result if lensing were not taken into account can be cal-
culated through a Fisher analysis (Takahashi & Nakamura
2003). Given the inner product (·|·), well approximated by
the integral in expression (16) for a monochromatic source
(Jaranowski et al. 1998), one can define the Fisher matrix,
Γij =

(
∂h
∂qi |

∂h
∂qj

)
, where q is a vector of parameters, which

includes the source parameters (e.g., ε), location parameters
(e.g., position relative to solar system barycenter), and lens-
ing parameters (e.g., Mk). In general, these are not all in-
dependent. For example, the intensity pattern depends inti-
mately on both fGW and the Mk. Regardless, the relative er-
ror on any given qk is estimable through (∆qk)2 = (Γ−1)kk.
Unfortunately, a reliable calculation of Γij requires one to
build many amplification profiles so that derivatives with re-
spect to the lens parameters can be taken, which is beyond
our current computational capacity. Nevertheless, using the
methodology described herein, a thorough exploration of the
parameter space and relative errors could be performed; see
Appendix A in Takahashi & Nakamura (2003) for a Fisher
analysis in the case of a single point-mass lens.

Finally, we note that a misinterpretation of a time-varying
h0 as being intrinsic to the source, as opposed to being a re-
sult of lensing, may have important consequences for the evo-
lutionary modelling of the system. For example, in actively
accreting systems that nevertheless show little variation in
the spin frequency, it has been argued that GW backreaction
may be a key factor in maintaining spin equilibrium (Bild-
sten 1998; Gittins & Andersson 2019). The validity of this
scenario can be tested, for any given system, if the braking
index, nb = ν?ν̈?/ν̇

2
? , can be independently measured: GW-

dominated spindown implies nb ≈ 5. However, if ε were to
intrinsically vary over sufficiently short timescales, nb could
differ significantly from 5, even for GW-dominated emission
(de Araujo et al. 2016). Simultaneous measurements of nb
and ε could then be used as an independent means to quan-
tify the wave-like effects of lensing.
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5.4. Larger clusters

Although we have considered n ≤ 250 here, the PL ap-
proach can, in principle, be used to study wave-optical mi-
crolensing for arbitrary n. While lensing by a large number
of stars is unlikely for a Galactic source, the amplification
can be substantially increased if the perturbers are embedded
into larger mass distributions (Mishra et al. 2021; Cheung
et al. 2021), the extent to which is quantified by the optical
scalars κ and γ. For extragalactic sources, these quantities
may be sizeable fractions of unity (Garsden & Lewis 2010;
Lewis 2020). As noted in Sec. 5.2, and although depen-
dent on the source kinematics, phase drifts exceeding ∼ 1
rad can theoretically occur within the space of a few weeks
for n = 250. For even larger n, the loss of coherence will
be quicker, which may present a significant impediment to
narrow-band searches as the signal is scrambled.

6. DISCUSSION

It is hoped that continuous GW signals from
(magnetically-deformed or otherwise) neutron stars may
be detected in the near future. Owing to their comparatively
weak strain (1), a measurement likely requires observational
monitoring for at least a year with current technology (Su-
vorov 2021; Soldateschi & Bucciantini 2021), during which
the relative motion between the source and the detector is
important, especially if matched filtering is to be carried out
(Jaranowski et al. 1998; Dreissigacker et al. 2018). Although
rare, it is possible that intermittent lensing by one or more
stars may take place for sources located within/behind the
Galactic bulge or a globular cluster, modulating the resulting
signal to a degree that depends on the GW frequency, the
lens distribution, and the source velocity (Paczyński 1986b;
de Paolis et al. 2001; Meena & Bagla 2020).

Importantly, if the GW wavelength, c/fGW, is compara-
ble to or greater than the Schwarzschild radius, 2GML/c

2,
of any given microlens, the wave will be diffracted by the
gravitational ‘slit’ (Nakamura & Deguchi 1999; Takahashi
& Nakamura 2003). For ML ∼ M�, this condition is ful-
filled even for fGW . 102 kHz. If fGW is too low relative
to ML however, the resulting amplifications will be virtually
invisible; ∼kHz band radiation lensed by stars thereby lies in
something of a sweetspot. Geometric optics is inappropriate
in this case, and the relevant mathematical object is instead
the Fresnel-Kirchhoff diffraction integral (9). This integral is
solved in this paper for a variety of microlens distributions
(Figs. 1 and 2) using the PL approach described by Feld-
brugge, Pen, & Turok (2019); Feldbrugge & Turok (2020);
Feldbrugge (2020).

Depending on the nature of the macrolens and the neu-
tron star trajectory relative to it, we find that wave-optical
lensing may warp the waveform to make it appear as though
the ellipticity were varying (see Figs. 6 and 9), which has
implications when estimating the intrinsic properties of the
neutron star through (2) and similar formulae (Ciolfi et al.
2009; Mastrano et al. 2011; Lander 2013). Furthermore, the
overall SNR during an observational run may increase for
large amplification factors; see expression (16). If continu-

ous GWs emitted from a source ∼10 kpc away were lensed
by (sections of) a cluster similar to that of 47 Tuc (DOL ∼ 4
kpc, n ∼ 105), for example, we find that potentially large
amplifications could be achieved (possibly even larger than
those seen in Fig. 8). Kıroğlu et al. (2021) estimate, for 47
Tuc specifically, that the self-lensing rate for neutron stars is
∼ 2 × 10−3 yr−1. Any flux enhancement may however by
offset by the loss of coherence due to phase modulation (Fig.
7), which would inhibit matched filtering.

Aside from GWs, wave-like effects are also important
in the characterisation of radio sources in a variety of cir-
cumstances (Muñoz et al. 2016; Jow et al. 2020, 2021).
For planetary-mass microlenses and . GHz band sources,
such as radio pulsars or fast radio bursts (FRBs), lens-
ing is likely to operate in the diffractive regime where ge-
ometric optics fails to capture the salient features (Feld-
brugge, Pen, & Turok 2019). The implementation of the
core PL ideas is largely the same in this case, though for ra-
dio sources one typically requires a larger ∆θ [by a factor
∝ (ML/M�)(fradio/fGW)] to adequately resolve the angular
variations (see Sec. 4.1). An exploration of such cases for
n & 10 is currently beyond our available computational re-
sources; see Feldbrugge (2020) for n ≤ 3 simulations and a
discussion on the relevant challenges faced when extending
to n > 3. It is worth pointing out that the formalism pre-
sented here is not restricted to gravitational lensing, but can
also be applied to the case of plasma lensing, where a similar
Fresnel-Kirchhoff integral arises; see also Jow et al. (2021)
for recent applications of PL theory to plasma lensing.

We close by noting that there are multiple avenues for ex-
tension of this work. For the Galactic sources considered
here, the lensing probability is at most a few by 10−6 for
sources within the Galactic bulge (Paczyński 1986b; de Pao-
lis et al. 2001). This probability increases by several orders
of magnitude for extragalactic sources, where incoming ra-
diation may be lensed by up to . 107 individual perturbers
(Paczyński 1986a). While continuous waves from sources at
redshifts z � 0 will not be observable for the foreseeable
future, burst signals from merger events are now routinely
detected out to cosmological distances (the record holder be-
ing GW190521 at a redshift z = 0.82+0.28

−0.34; Abbott et al.
2020). Designing numerically efficient tools for the study of
ever-higher n simulations is thus of astrophysical importance
(Guo & Lu 2020) (see also Sec. 5.4). In any case, the results
presented here are mostly intended as a proof-of-principle,
and thus the lens-plane distributions we have adopted (Figs.
1 and 2), while loosely resembling what might be expected of
open or globular clusters, are also rather arbitrary. It would
be interesting to instead model the microlenses based on as-
trophysical data. Finally, in an effort to better understand the
nature of the GWs in strong gravitational fields, one might
ambitiously try to extend the PL formalism beyond Newto-
nian backgrounds described by (5); the lensing theory devel-
oped by Harte (2019) and Cusin & Lagos (2020) would be
useful in this direction. More ambitiously still, wave-optical
lensing in theories beyond general relativity could also be ex-
plored (Ezquiaga & Zumalacárregui 2020).
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APPENDIX

A. PICARD-LEFSCHETZ EVALUATION OF THE
GENERALISED FRESNEL INTEGRAL

In this Appendix, we outline how the PL calculation pro-
ceeds in a non-trivial case, possessing both singularities and
images, where a closed-form solution is known. Consider the
generalised Fresnel integral with (e.g., Mathar 2012),

Fn,m =

∫ ∞
0

xmeix
n

dx (A1)

=
1

n
Γ

(
m+ 1

n

)
e
iπ(m+1)

2n . (A2)

Integrals of the form (A1) are similar to the Fresnel-
Kirchhoff case of interest since we can write xmeix

n

=
eix

n+m log x, and the logarithmic term resembles the projec-
tion of the gravitational potential onto the lens plane, with
m playing the role of the lens mass; see equations (11) and
(12). For a thorough discussion on the PL evaluation of the
ordinary Fresnel integral (m = 0, n = 2), we refer the reader
to Feldbrugge, Pen, & Turok (2019).

To evaluate expression (A1) using a PL approach, we first
analytically continue the variable, x → u + iv, and expand
the exponent into real and imaginary components. We con-
sider the case of integer n ≥ 2 so that the integral converges
and we can apply a Binomial expansion, ultimately finding

ixn +m log x→
n∑

n−k odd

(−1)
n−k+1

2

(
n

k

)
ukvn−k +

m

2
log(u2 + v2) + i

[
n∑

n−k even

(−1)
n−k

2

(
n

k

)
ukvn−k +m tan−1 v

u

]
, (A3)

where, for real m, the first group of terms (the function h
from Sec. 4) is strictly real and the second (H) is imaginary;
for general m ∈ C, the decomposition is only slightly more
involved. The Morse flow equations (14) can now be written
down in full, though are lengthy for general n,m. In the case
of n = 4, for example, they are explicitly given by

du

dλ
= 12u2v − 4v3 − mu

u2 + v2
, (A4)

and
dv

dλ
= 4u3 − 12uv2 − mv

u2 + v2
, (A5)

where we use the Euclidean metric,Gij = δij , by identifying
C with R2 (see Footnote 3). For general n,m it is not possi-
ble to evaluate the flow solutions analytically, owing largely
to the non-linearity of the problem. A straightforward but nu-
merical solution to (A4)–(A5) is necessary. The initial con-
ditions are set as u(0) = v(0) = ε = 10−4 to circumvent the
singularity at x = 0 for m 6= 0. This regularisation is that
which is outlined in point 2 within Sec. 4.1. Alternatively,
we could start flowing from u(0) = ε, v(0) = 0 (dotpoint 3).

It is also not hard to see that there are, in general, station-
ary point(s) of the integrand (A1) at pn,m = (im/n)1/n;
at this (multi-valued) point, the right-hand-sides of (A4) and
(A5) vanish, and the flow terminates. Therefore, once these
points are encountered, it is necessary to introduce another
perturbation u′(λ)→ u′(λ)+ε to continue the flow (see Fig.
3). However, most of these images are irrelevant: those with
u < 0, for example, lie outside of the domain. The overall
thimble we require therefore consists of both upwards and
downwards flows only from relevant images.

Solutions to the respective flow equations for various m
and n are shown in Fig. 10. Note that these contours do not

extend to infinity, and therefore the application of Cauchy’s
theorem is only approximate. However, even for these ‘short’
thimbles, the errors between our results and the analytic solu-
tion (A2) are at the ∼ 0.1% level. For example, the thimbler
yields a value LT4,1 = 0.3128+0.3123iwhile the true value,
from (A2), is F4,1 = 0.3133 + 0.3133i. Extending the range
to beyond Re(x) > 5 reduces the error further; for thimbles
built out to Re(x) & 10, the numerical evaluations match the
analytic expression to machine precision.
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Figure 10. Examples of Lefschetz thimbles (solid curves) used
in the evaluation of the generalised Fresnel integral, Fn,m. The
coloured points mark the locations of the n images, pn,m =

(im/n)1/n, with the largest marker indicating the image that is rel-
evant in the construction of the associated thimble, defined as a so-
lution to the Morse flow equations (14). In all cases with m > 0,
there is also a singularity at x = 0, as shown by the black point. For
m = 0, this point is an image. Cauchy’s theorem (13) is applied
together with Jordan’s lemma to evaluate the integral along Re(x).
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B. NUMERICAL CONVERGENCE TESTS

In addition to the one-dimensional case considered in Ap-
pendix A, we can also examine how the PL evaluation de-
pends on the angular resolution for two dimensional inte-
grals. To this end, we consider the point-mass case (i.e.,
n = 1), where the lens mass is placed at the origin without
loss of generality. Ignoring offsets of the time-delay function,
the amplification factor (9) is given by the analytic formula
[see equation (17) in Takahashi & Nakamura (2003)]

F (fGW,xs) = exp

(
wπ

4
+
iw

2
ln
w

2

)
Γ

(
1− iw

2

)
× 1F1

(
iw

2
, 1;

iw|xs|2

2

)
,

(B6)

where we use the shorthand w = 8πGMLfGW/c
3, and 1F1

denotes the hypergeometric function of the first kind.
In the PL integration, there are three separate ‘resolutions’

that control the accuracy of the evaluation for any given
source coordinates xs, the first of which is (i) the step size
in the Morse solver. As commented in Sec. 4.1, we em-
ploy a Runge-Kutta algorithm to solve the Morse flow equa-
tion (14), the step size of which is chosen sufficiently small
such that the global error is at most one part in ∼ 104, in
turn ensuring that the imaginary part of the phase, defined
by the function H , varies negligibly on the numerical thim-
ble. The second source of error, related to the first, concerns
(ii) the contour length (i.e., the maximum λ out to which
one flows). Formally the contour should extend to infinity
to apply Cauchy’s theorem, and thus a premature truncation
necessarily implies approximation. However, the steepest
descent nature of the Morse flow guarantees that this error
is tiny even for short thimbles, as explored in Appendix A.
Finally, we have (iii) the angular resolution, relevant when
computing multi-dimensional integrals. The accuracy, as
a function of this last resolution, depends on the numeri-
cal method used to sum the angular integrals – Simpson’s
method is employed here.

Table 1 compares the numerical PL evaluation of the
diffraction integral (9) with fGW = 1kHz, in the case of a sin-
gle point-mass lens, with the analytic formula (B6) for sev-
eral different lens masses and positions over a variety of an-
gular resolutions 2π/∆θ. In general, convergence for higher
masses (or, equivalently, greater fGW) requires greater ∆θ
because the integrand varies more rapidly. We see that for
∆θ = 64 the numerical expressions are relatively inaccu-
rate, especially in the imaginary sector, with the exception
of the lightest case ML = M�, where the results match the
analytic expression to within ∼ 0.1%. For ∆θ = 128, the
results for ML ≤ 10M� match the analytic solutions to high
precision, though greater resolution is needed for the highest
mass cases. For ML = 103M� in fact, even doubling the
resolution again to ∆θ = 256 produces unreliable results. In
that case, a resolution of ∆θ = 512 yields a match to within
∼ 0.2%. It should be noted though that for ML & 103M�
(i.e., w � 1) we are no longer in the diffractive regime, and
a geometric optics approach would already be sufficient.

The heaviest macrolens considered in this paper has∑
kMk = 250M� (i.e., n = 250), and thus we anticipate

that ∆θ = 256 yields maximum errors of a few percent for
fGW . 2kHz. For all simulations presented in this work, we
use ∆θ = 512.

Table 1. Comparison of numerical evaluations of the amplification
factor F for a point mass lens located at the origin with the analytic
formula (B6). In each case, the contour length and Morse solver
step-size is held fixed, as is the radiation frequency, fGW = 1kHz.

(|xs|,ML) ∆θ Numerical Exact

(0, M�) 64 1.08907 - 0.14960 i 1.0883 - 0.14942 i

128 1.0885 - 0.14946 i

256 1.0883 - 0.14942 i

(5, M�) 64 0.99437 - 0.17269 i 0.99442 - 0.17238 i

128 0.99440 - 0.17245 i

256 0.99442 - 0.17238 i

(0, 10M�) 64 1.9981 - 0.04398 i 1.9905 - 0.04087 i

128 1.9924 - 0.04163 i

256 1.9909 - 0.04104 i

(5, 10M�) 64 -0.46442 - 0.99317 i -0.42471 - 0.94145 i

128 -0.42474 - 0.94147 i

256 -0.42471 - 0.94145 i

(0, 102M�) 64 4.0475 - 4.8647 i 3.9867 - 4.7883 i

128 3.9964 - 4.8010 i

256 3.9961 - 4.7902 i

(5, 102M�) 64 0.0349 - 0.76385 i 0.25649 - 0.95928 i

128 0.30569 - 1.0736 i

256 0.25319 - 0.95975 i

(0, 103M�) 128 -6.3551 - 19.680 i -5.0514 - 19.045 i

256 -5.3672 - 19.200 i

512 -5.0464 - 19.042 i

(5, 103M�) 128 0.84169 - 0.05703 i 0.97268 - 0.16039 i

256 0.85180 - 0.13543 i

512 0.97147 - 0.16098 i
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