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ABSTRACT

A pulsar dynamic spectrum is an inline digital hologram of the interstellar medium; it encodes information on the propagation
paths by which signals have travelled from source to telescope. To decode the hologram it is necessary to “retrieve’” the phases
of the wavefield from intensity measurements, which directly gauge only the field modulus, by imposing additional constraints
on the model. We present a new method for phase retrieval in the context of pulsar spectroscopy. Our method makes use of the
Fast Iterative Shrinkage Thresholding Algorithm (FISTA) to obtain sparse models of the wavefield in a hierarchical approach
with progressively increasing depth. Once the tail of the noise distribution is reached the hierarchy terminates with a final,
unregularised optimisation. The result is a fully dense model of the complex wavefield that permits the discovery of faint signals
by appropriate averaging. We illustrate the performance of our method on synthetic test cases and on real data. Our algorithm,

which we call H-FISTA, is implemented in the Python programming language and is freely available.
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1 INTRODUCTION

Although not the most numerous of astronomical radio sources, pul-
sars are individually amongst the most informative for studies of
multipath propagation of radio waves through the interstellar medium
(ISM) (e.g. Rickett 1990). Interference fringes between these vari-
ous paths have high visibility, because of the small size of the pulsar
radio emission region, and a single dynamic spectrum may contain
a great deal of information on the structure and kinematics of the
scattering material (free electrons, typically) along the line-of-sight
to the source. Studying these propagation effects is important both
for understanding the ISM itself and for characterising the associated
signal delays — which can be a significant source of systematic error
in pulsar timing experiments (e.g. Lorimer & Kramer 2004; Verbiest
et al. 2020).

Many studies of radio pulse propagation in the ISM have con-
centrated on statistical properties, such as the spectral and temporal
widths of the signal autocorrelations, i.e., the scintillation timescale
and bandwidth (or its inverse, the pulse broadening time). These
quantities can be readily measured (e.g. Cordes et al. 1985; Gupta
et al. 1994; Bhat et al. 2004), and theoretical predictions are avail-
able for a variety of models of the scattering material (e.g. Goodman
& Narayan 1985; Lambert & Rickett 1999). A diverse collection of
statistical properties, including measures that are not derived from
pulsar observations, have been shown to be broadly consistent with
a Kolmogorov spectrum of inhomogeneities in the ionised ISM over
a very wide range of spatial scales (Armstrong et al. 1995). How-
ever, the observational data on both pulsars and quasars sometimes
show features that are inconsistent with Kolmogorov turbulence (e.g.
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Cordes & Wolszczan 1986; Fiedler et al. 1987; Rickett et al. 1997;
Brisken et al. 2010; Geyer et al. 2017). These anomalies are not un-
derstood, but it is clear that they cannot be fully characterised by a
small number of statistical measures. The high information content
of individual pulsar dynamic spectra makes spectroscopy an attrac-
tive approach for investigating the cause of these anomalies, and to
that end techniques for extracting the information are needed.

One such technique that has proved valuable is to study the power
spectrum of the dynamic spectrum — a quantity that is often re-
ferred to as the “secondary spectrum”. Applying that method to high
resolution, high signal-to-noise data Stinebring et al. (2001) discov-
ered that power is often concentrated along parabolic loci in the
Fourier domain, with signal delay (conjugate to radio frequency) be-
ing proportional to the square of the signal doppler-shift (conjugate
to the sample time). The preponderance of parabolic arcs in pulsar
secondary spectra is now understood to be entirely a result of the
scattering geometry — see Cordes et al. (2006) and Walker et al.
(2004). The material responsible for scattering the radiation is not
distributed uniformly along the whole line-of-sight, but is tightly
concentrated at one or more distances. Thus the scattering medium
can be considered to be a collection of thin screens. And the visi-
bility of the scintillation arcs is greatly enhanced if the scattering is
significantly anisotropic.

Although secondary spectrum analysis has provided some impor-
tant insights it is not without its problems. Chief amongst these is
the fact that in strong scattering the secondary spectrum can be very
complicated and difficult to interpret. The source of this difficulty
is easy to spot: the secondary spectrum is actually fourth-order in
the wavefield — i.e. the electric field, i (1, w), as a function of de-
lay (1) and doppler-shift (w) — being the squared modulus of the
convolution of the wavefield with the complex conjugate of itself.
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Figure 1. Illustrating the relationships between wavefield, h (7, w) = ¥ (H) (left panel; only the modulus |/ is shown), dynamic spectrum, D (v, t) = |H |?
(middle panel), and secondary spectrum S (7, w) = |F (D) |? (right panel). The secondary spectrum can also be written as S = |h* ® h|?, where ® denotes
convolution. The dynamic spectrum is the measured quantity in practice, and from it the secondary spectrum is easily evaluated; determining the wavefield

requires much more work but the result can offer immediate insights.

The relationships between the wavefield, the dynamic spectrum and
the secondary spectrum are illustrated in Fig. 1. The main point to
observe in this figure is that a simple and highly sparse wavefield
yields a complicated and dense distribution of power in the sec-
ondary spectrum; the slightly whimsical choice of field structure in
this illustration serves to emphasise the clarity of the wavefield as a
representation of the signal.

Unfortunately the wavefield is not easy to determine. The problem
is that the dynamic spectrum tells us only the dynamic field am-
plitude, |H(v,t)|, whereas we also need the phase of H in order to
determine the wavefield (via a two-dimensional Fourier transform).
By construction, D(v, ) = |H(v,t)|?, the dynamic spectrum obliter-
ates phases. Another way of thinking about the challenge is to focus
on the circularity: the Fourier transform of the dynamic spectrum is
D = h* ® h, so we need to deconvolve i* from the observed D in
order to arrive at h. The process of discovering / from its convolution
is prone to error, leading to an imperfect deconvolution, so that our
estimate of / is contaminated by features belonging to the conjugate,
or “twin” image, h*.

Two methods are known that use particular properties of radio
pulsar signals to gain access to the wavefield. One is to form a
direct estimate of the dynamic impulse response function, i(t,1),
by extracting sequences of voltages from a baseband recording of
a set of giant pulses — under the assumption that these signals are
unresolved impulses at source (Main et al. 2017). The wavefield
then follows by Fourier-transforming over the sample time, ¢. This
approach has the disadvantage that it is restricted in its applicability
to the small fraction of pulsars that exhibit giant pulses. The second
method exploits the periodic nature of the pulsar signal to construct an
intrinsically complex estimator, the cyclic spectrum, which preserves
the phase of the signal (Demorest 2011). The principal disadvantage
of cyclic spectroscopy is that it only manifests substantial phases
for signals with propagation delays that are large compared to the
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pulse-width (Walker et al. 2013), whereas we are typically interested
in all of the scattered signal components, not just those with large
delays. Indeed sometimes the vast majority of the signal is delayed by
only a small fraction of the pulse width — e.g. in the case of nearby,
long-period pulsars observed at high radio frequencies. Consequently
cyclic spectroscopy, although very helpful, is not a panacea.

In this paper we consider the limiting case of pulsar dynamic
spectra, where there is no explicit phase information in the data and
the phases must somehow be “retrieved” from measurements of |H|
alone. Phase retrieval is a procedure that is encountered in many
scientific fields and is known to be a difficult problem (see, e.g., the
review by Shechtman et al. 2015). The general approach is to im-
pose strong additional requirements on the wavefield, beyond simply
matching the data, so that a unique solution can be obtained. Bearing
in mind that the dynamic spectrum consists of N real numbers, while
the dynamic field is described by N complex numbers, it is clear that
we need an absolute minimum of N additional constraints in order
to make a unique solution possible (number of unknowns equal to
the number of constraints). And in practice, with noisy data, it is
necessary to have a lot more constraints than unknowns in order to
obtain a good solution.

For many years the hybrid input-output (HIO) map of Fienup
(1982) was the principal workhorse for phase retrieval. HIO is an
iterative algorithm that utilises alternating projection operators to
approach the solution: one projection, the Fourier modulus projec-
tion, forces the iterate to match the data, while the other, the support
constraint, forces it to lie within a small, predefined region of the
solution space. It is now known that HIO is one specific example
of a broader category known as Difference Map algorithms (Elser
2003), in which a variety of constraints can be formulated as pro-
jection operators and used in conjunction with the Fourier modulus
projection.

In our application we automatically have a support constraint: any



scattered signal must have non-negative delay relative to the direct
line-of-sight, so A(t,w) = 0 V 7 < 0. This provides us with N/2
complex constraints, in addition to the N real data constraints, result-
ing in exactly as many constraints as unknowns — barely sufficient
to obtain a solution even in the case of zero measurement noise. If it
happens that the scattering takes place in only one plane on the sky
then our solution space need only be one-dimensional, and in this
situation the model wavefield is very tightly constrained by the two-
dimensional dataset (Baker et al. 2022; Sprenger et al. 2022). In the
more general case of a two-dimensional scattered image we need to
impose additional, strong restrictions on the solution. A tight support
constraint cannot be employed because we don’t have prior knowl-
edge of where the signal is located, so HIO is not a natural choice
of phase retrieval algorithm in this context. But we can instead look
for a sparse solution, as was done by Walker & Stinebring (2005)
and Walker et al. (2008) using a method fashioned after the CLEAN
algorithm.1 In this paper, rather than CLEAN-ing, we take advantage
of recent developments in large-scale, sparse optimisation; specifi-
cally, the Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
of Beck & Teboulle (2009) (see also Beck 2017), which we adapt
to the context of phase retrieval for pulsar dynamic spectra. Our
approach was inspired by the “Wirtinger Flow” phase retrieval algo-
rithm of Candes et al. (2014).

In FISTA, sparsity is induced by including the /; norm (1-norm)
of the solution as one part of a composite objective function that
is minimised, the other part being the sum of squared-differences
between model and data. The level of sparsity in the solution is
controlled by the level of regularisation, i.e. the weight that is given
to the /1 norm in the composite objective. Clearly there is a trade-off
here: high levels of regularisation help to define a unique solution,
but if that solution is too sparse then it cannot provide an accurate
model of the data; on the other hand insufficient regularisation may
lead to solutions for 4 that are strongly contaminated by the twin
(conjugate) image, h*. To deal with this issue we do not construct
our solution via a single optimisation, but rather a sequence of FISTA
optimisations using progressively lower levels of /| regularisation. In
this way we seek to navigate to a model of the wavefield that is free
of contamination by the twin image, yet is as detailed and accurate
as possible — i.e. limited by the measurement noise in the data. We
refer to this approach as “hierarchical-FISTA”, or H-FISTA for short.
We provide the source code of our implementation publiclyz.

This paper is structured as follows. In the next section we set out the
details of the hierarchical FISTA approach, as we have designed it,
including some explanation of the rationale for the particular choices
that were made in this design. The performance of H-FISTA on syn-
thetic test data is shown in §3, including both noiseless and noisy
cases. Although the noiseless case is artificial it is nevertheless of
interest in that it represents a limiting condition; perfect reconstruc-
tion is shown to be possible in this case. In §4 we apply H-FISTA
to real pulsar data, with all the potential complications that brings
(e.g. radio-frequency interference). We demonstrate the results of
applying H-FISTA to two observed dynamic spectra: one from the
slow pulsar JO837+0610, for which the scattering is practically one-
dimensional, and thus the wavefield is highly sparse; the other from
the millisecond pulsar J1939+2134, which exhibits a dense wave-
field and is therefore less well matched to our method of solution.
Discussion and conclusions follow in § 5 and 6.

' The CLEAN algorithm (Hogbom 1974) is commonly used for deconvolu-
tion in the context of interferometric imaging in radio astronomy.
2 https://github.com/sosl/H-FISTA
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2 MODELLING WITH HIERARCHICAL FISTA

We begin by describing how a sparse model is obtained using /;
regularisation in the FISTA algorithm, before turning to our hierar-
chical implementation in which the strength of the regularisation is
progressively decreased.

2.1 Obtaining a sparse model with regularisation

A commonly used method for obtaining sparse models is to employ /{
regularisation when fitting to data — an approach that is sometimes
referred to as the least absolute shrinkage and selection operator or
LASSO. This method originated in geophysics (Santosa & Symes
1986) and was independently rediscovered in statistics by Breiman
(1995). It is also widely used in some machine learning algorithms;
for example, it is used to avoid overfitting and to perform feature (i.e.,
parameter) selection (e.g., Schmidt et al. 2019).

The method works by including an additional term in the demerit
function?, equal to the /; norm of the model parameters:

F=f+ Al (€]

where h represents the model, A (> 0) is the regularisation factor,
||-]]1 is the I norm, F is the total demerit function, and f is a measure
of the goodness of fit — typically the sum of squared differences
between model and data. Inclusion of the /; norm induces sparsity
in the model because non-zero components contribute significantly
to the demerit even if they are small.

An important consequence of including the /; term in the demerit
function is that the latter is no longer differentiable, which renders
many traditional methods of optimisation not usable. Instead, the
proximal gradient method must be used, as described in the excellent
monograph by Beck (2017). The proximal gradient method relies
on the existence of a well-defined and easily calculable proximal
operator appropriate to the non-differentiable part of the demerit. In
our case, where that part is the /; norm, the appropriate operator
is the soft-thresholding operator, leading to the iterative shrinkage-
thresholding algorithm (ISTA, Beck 2017) for minimising F.

Each iteration of ISTA yields an updated model, /., from that
at the previous iteration, /g, by stepping down the gradient of f and
then applying the proximal operator to the result:

1
hy41 = prox (hk - sz (hk))’ 2

where L is the appropriate value of the Lipschitz constant and V is
the gradient with respect to 4. Examining the argument of the prox
operator in equation 2 we recognise that the update follows a form
similar to that of Newton’s method for root-finding, with L playing
the role of a curvature of f with respect to /. In §2.3.1 we explain
the role of the Lipschitz constant in more detail.

For the demerit given in equation 1, the prox operator in equation 2
is soft-thresholding at threshold 1/ L, defined by:

A h
prox(h) = max (|h| - ZO) m 3)
This definition is suitable for our application in which the model, 4,
is complex. We note that using any non-trivial level of regularisation
(4 > 0) leads to values of the model parameters that are biased away
from the best fit (minimum f') for a given support. On the other hand,
when we set A = 0, the prox operator becomes the identity operator
and ISTA can thus be used for unregularised optimisation.

3 The demerit function is also called cost, loss, or error function
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In practice we do not use ISTA, but FISTA — the fast iterative
shrinkage-thresholding algorithm of Beck & Teboulle (2009) (see
also Beck 2017). FISTA is a first order method, requiring gradient
evaluations but not curvatures; it was inspired by the work of Nesterov
(1983). As the name suggests, FISTA typically converges rapidly.
On convex problems, i.e. where the goodness of fit is a convex
function of the model parameters, the excess demerit (relative to
its minimum value) shrinks with iteration number, k, at least as
rapidly as 1/k2. This is much faster than ISTA, which converges as
1/k. Phase retrieval is known to be a non-convex problem (Bauschke
et al. 2002), so in our case these guaranteed convergence rates do not
apply.

Rather than the ISTA update given in equation 2, the FISTA model
update is evaluated from a sequence of auxiliary points, yg, that lie
close to, but distinct from the model:

1
hi41 = prox ()’k - va (yk)) . )

The sequence of auxiliary points is in turn specified by

(Prs1 = hi) s (%)

(—1 +l‘k)
Y+l = hgs1 + e

in terms of the model, £, and the scaling parameter

1+,/1+4ti

el = ——— Q)

To begin the sequence we must choose an initial model, /g, and the
other two variables are initialised thus: yg = hq; and, 79 = 1.

The fact that FISTA only requires evaluation of the gradient at
each step gives it a big speed advantage over methods that require
also evaluation of elements of the Hessian (curvature terms); thus
FISTA is a good choice for large-scale optimisation problems such
as we address in this paper.

Because f is real valued, it cannot be an analytic function of the
model wavefield parameters, which are complex, and thus derivatives
as they are usually defined on the complex plane do not exist. Instead
we use Wirtinger derivatives to form the gradient, as described in
appendix A.

It is important to be aware that FISTA’s progress to a solution is
in general not monotonic. This behaviour comes about because the
iteration, viewed as a dynamical evolution, includes a “momentum-
like” term — the second term on the right-hand-side of equation 5
— which causes the trajectory to overshoot when it passes close to
the minimum (Su et al. 2016). If a monotonic sequence is desired
it can be achieved by restarting FISTA, with g taken as the model
corresponding to the minimum demerit achieved on the current tra-
jectory (Beck 2017). For our application it is unimportant whether or
not the evolution is monotonic and therefore we have not employed
restarting.

To summarise, the FISTA algorithm is:

Input: L - the Lipschitz constant

A - regularisation parameter

hg - initial model of the wavefield
Step 0: to=1

Yo =ho
Step ki st = prox (vi - £V ()

L+y[1+4 1}
Tk+l =

7
-1
Viet = hyar + 4 ,ktfk) (hies1 = hic)
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2.2 The demerit function

We seek a model wavefield, h(7, w), that fits the data, i.e. the observed
dynamic spectrum D (v, t). The model dynamic spectrum is simply

Z(v,t) =H(v,t) H (v,1), @)
in terms of the dynamic ﬁeld,4 H, where
H=7"(n, ®)

and F~! (-) denotes the inverse Fourier transform. We thus form the
residual, R = Z — D, between model and data, and the goodness of
fit is gauged by the sum of squared residuals:

f(h) = % Z R2. ©)
v,t

And finally we have the real-valued demerit function which depends
on the complex-valued wavefield h:

E(h) = f(h) +A|[hll, 10)

In practice it is convenient to implement different levels of regular-
isation for different regions of the modelling space, as follows. The
solution we seek lies in the positive delay half-space, so we exclude
negative delay components from the model by imposing regularisa-
tion with A = co on the region 7 < 0. In the positive delay half-space,
by contrast, we have a finite value for A. A small fraction of the pos-
itive delay components have already been established (by previous
FISTA optimisations) as a necessary part of the model, so they are
optimised without regularisation (1 = 0), in order to avoid bias —
these are referred to as “approved” components in this manuscript.
Consequently the demerit function that we use in practice has the
form

F(h) = f(h) +[IA© hll1, (11)

where A is a matrix of regularisation factors, and © indicates the
Hadamard product (i.e., element-wise multiplication); and each el-
ement of A takes one of three values — 0, A, or co. Similarly, we
replace the scalar regularisation factor A in the prox operator (3) with
the matrix A0

2.3 Backtracking to the Lipschitz constant

The guaranteed convergence properties of FISTA on convex prob-
lems, mentioned in the previous section, depend on knowing the
appropriate value of the Lipschitz constant for V£. It is determined
by the requirement

IVf ) =-Vf@ I < Lily-x]l, (12)

for all possible choices of x,y within the region of interest. For
some particular examples of functions, f, it is possible to evaluate L
analytically, but we have not been able to establish an analytic result
in our case. Instead we proceed by making an initial estimate of L,
as described in Appendix B, and then at each iteration of FISTA
we check for consistency; this procedure is known as “backtracking”
(Beck & Teboulle 2009; Beck 2017).

If we make an estimate of L that is too large then FISTA will

4 This quantity is called the filter in Walker et al. (2013).

5 After developing this approach we became aware that non-uniform /; reg-
ularisation has previously been proposed in bioinformatics by Zeng et al.
(2020), who refer to the method as “differential shrinkage”, and their whole
algorithm as “xtune LASSO”.



converge more slowly than it would with an accurate value of L.
On the other hand, if the current estimate of L is too small then
FISTA may not converge at all — which is a much more serious
problem. Consequently backtracking is simply designed to ensure
that our estimate of L is not too small, as gauged by the requirement
that f is bounded locally by a quadratic form (Beck & Teboulle
2009; Nesterov 2014; Beck 2017). For our case, where the domain
is complex, the appropriate bound is

FO) < F0O) 2R (=) TFON) + 5l =P, (13)

where R (-) indicates the real part, and (-, -) is the dot product. We
check whether this inequality is satisfied at each step of the FISTA
iteration; if not we increase L by a factor n > 1 (we have adopted
n = 1.15) and reevaluate, repeating this process until the inequality
(13) is satisfied.

2.3.1 Initial wavefield and support constraint

A number of strategies exist for choosing the initial model in it-
erative approaches to phase retrieval, as described in Fannjiang &
Strohmer (2020). These methods include spectral initialisation, null
initialisation, pre-processing and random initialisation. In our case
we have very little a priori information on the underlying wavefield
so we use a simple initial guess: a single component model at the
origin (t = 0 = w). This choice corresponds to a constant predicted
dynamic spectrum Z.

We initialise the value of the only non-zero component in the initial
wavefield ho such that Z = D where - indicates the average. That
is, our initial wavefield model reproduces the average value of the
observed dynamic spectrum without any further structure. As we are
confident that this component should be present in the wavefield —i.e.
itis automatically an approved component — we set the corresponding
element in the A matrix to zero, thus ensuring that we recover an
unbiased estimate of this component during optimisation.

As usual with phase retrieval problems, there is an ambiguity in
our model as can be seen from equation 7: if we rotated the phase
of the wavefield by some constant value, and thus also rotated the
phase of the dynamic field, the dynamic spectrum model, Z, would
not change. In other words: multiplying H by e!? does not affect Z.
Because of this, the wavefield & can rotate in overall phase during
the fitting, and to prevent that from happening we force the phase at
the origin of the wavefield to be zero at all times.

In contrast to the secondary spectrum, the wavefield 4 cannot
contain any signals at negative delays as they are not causal. This
provides a weak support constraint for our phase retrieval problem.
To implement this constraint in our algorithm, we set the negative
delay regions of the regularisation matrix, A, to infinity, thus ensuring
that the soft-thresholding operator will always set the corresponding
wavefield coefficients to zero.

In addition to the familiar ambiguity in the overall phase of the
wavefield, the predicted dynamic spectrum (unlike the cyclic spec-
trum) is insensitive to the location of the origin of the wavefield
coordinates.® This degeneracy, in combination with a causal sup-
port constraint, can introduce problems, as follows. Our initial, plane
wave model naturally represents the strongest individual plane wave
component in the real wavefield, no matter where it occurs. However,
that strongest component might actually be located at delay 79 > 0,

6 To see why: if we multiply our model H by the phase factor exp[i (7ov +
wot) |, the model Z is unchanged.
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so that any bona fide signal components in the delay range 0 < 7 < 1
will be eliminated from our model if we use a strictly causal support
constraint. To mitigate this problem we include a region with small
negative delays within our support; in our software this region has a
default extent of four pixels (but can be adjusted by the user).

2.3.2 Choice of regularisation level

The character of the solution returned by FISTA is strongly dependent
on the numerical value of the regularisation parameter, A: if A is set
to a sufficiently large value then the optimum wavefield is & = 0,
whereas if we use A = 0 then there is no regularisation and the result
will be a fully dense wavefield that is strongly contaminated by the
twin image. Neither extreme is useful. Instead we need to choose a
value of A that yields a highly sparse but non-trivial model; we will
call this value Ajyj.

Based on testing with both real and simulated dynamic spectra
(typically with overall size N, X Ny ~ 10%) we have found that
our hierarchical approach, H-FISTA (see §2.4), typically performs
best if the first FISTA iteration returns a wavefield model having N
non-zero components with 10 < Ny <100. And we can relate N to
the initial gradient and regularisation level as follows. Excepting the
origin, our initial wavefield model is null, so the proximal operator in
equation 2 acts on the quantity —V f (&) /L. The proximal operator
(equation 3) yields a null result unless |2| > A/L, so the number of
non-zero components in the wavefield model after the first FISTA
iteration will be the number of components for which

[Vf(ho)| > Ainit- (14)

Thus once Ny is selected we can choose a suitable value of Aj,: we
set Ajpit equal to the Ny-th largest value of the modulus of the intial
gradient. Unless otherwise specified, in this paper we have employed
Ny = 60.

We note that while we can control the exact number of new com-
ponents present in the wavefield after the first FISTA iteration, we
cannot predict how many non-zero components will be present in the
model after subsequent FISTA iterations. Empirically we have found
that the number of non-zero components in the optimised wavefield
model (for regularisation A = Ajyj¢) is typically within a factor ~ 2 of
Ny.

2.3.3 Number of FISTA iterations

In our approach the FISTA algorithm is used multiple times, with
different levels of regularisation, as described in §2.4. Excepting the
first and last such levels, which have special requirements (see §2.4),
the aim at each stage is simply to improve the wavefield model, and
for this goal it suffices to use a fixed number of iterations, Nijter,
in each FISTA optimisation. After some experimentation we chose
Niter = 80, as this value seems to work well for both the synthetic
and real data we have tested our algorithm on.

2.3.4 Debiasing and hard thresholding

After FISTA has gone through Nj, iterations, we stop the optimi-
sation. The model wavefield at this stage is affected by a number of
issues: a) the total number of non-zero components may be too small
to describe the data well b) some twin image components may be
present in the model, albeit hopefully only at low levels, and c) the
“new” components of the image —1i.e. those for which the correspond-
ing value in the regularisation matrix A was above zero and finite —

MNRAS 000, 1-16 (2015)
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are biased by the soft-thresholding operation. We defer addressing
the first of these issues, and consider now the other two.

Dealing with bias in the wavefield model is straightforward: we
set the elements of A to zero where the wavefield is non-zero (and
oo elsewhere), and run FISTA again. In this case our prox operator
is the identity (or else null), and we are performing a simple (un-
regularised) least-squares optimisation with a fixed support. After
this debiasing step we expect that all legitimate components of the
wavefield model ought to exceed the threshold value A/L used in
the prox operator (3) for the original, regularised FISTA optimisa-
tion. We can therefore reasonably exclude any weaker components
from the model on the grounds that they are less reliable than the
stronger ones and, in particular, they may well be components of the
twin image. We therefore apply a hard thresholding operation on the
debiased wavefield:

b Tu(h) = h o ®(|h| _e%), (15)

where O is the Heaviside step function. Our software includes a scal-
ing parameter, €, for this hard thresholding step that can be adjusted
by the user, with € = 1 by default.

If any components are removed by the hard thresholding operation,
we again perform an unregularised optimisation followed by hard
thresholding, and repeat. In our testing, most of the time only one such
loop is executed. The remaining non-zero components at this stage
are referred to as “approved” components, and to avoid introducing
unnecessary bias into our wavefield model we set the corresponding
elements of A to zero in all subsequent FISTA optimisations — as
per the comments following equation 11.

2.4 Hierarchically extending the wavefield model

The algorithm described above is designed to yield a model wavefield
that is free of contamination by the twin image, and has unbiased
component values, but is likely to be too sparse to describe the data
accurately. We cannot improve the accuracy of the model by simply
increasing Ny (or, equivalently, decreasing the initial regularisation
Ainit) without potentially increasing the level of contamination by the
twin image. Instead we take our optimised sparse wavefield model as
the starting point for a new FISTA optimisation, as already described
but with a lower level of regularisation, 4 < Ajn;;- And this whole
process of optimisation, debiasing, hard-thresholding, and further
reducing the regularisation factor is repeated in a loop. We use a
geometric sequence of A such that the k-th value of the regularisation
factor is:

Ainit

Ak =
nh

(16)

with scaling factor ny = 1.15. In this way we gradually build a
detailed description of the wavefield, while nevertheless imposing
significant regularisation on all of the new components as they are
added to the model, no matter what their strength.

2.4.1 Stopping criterion

The final piece we need to complete the H-FISTA algorithm is a stop-
ping criterion for looping through the A values. We use two stopping
criteria and interrupt H-FISTA when either of them is triggered.
The first criterion, which we refer to as the sparsity criterion, is
simple: we stop iterating through A values if the number of non-zero
components present in the wavefield exceeds a certain maximum
value. This criterion is used to ensure that the wavefield model is
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indeed sparse, so that the optimisation process is well constrained.
In our software the default threshold level corresponds to a wavefield
with only 3 per cent of components being non-zero, but the threshold
can be adjusted by the user — e.g. in order to obtain solutions for
denser wavefields.

The second criterion, which we refer to as the spatial criterion, is
based on the idea that noise is uniformly distributed over the domain
of the solution, whereas the signal is not — signal components are
generally expected to be stronger near the origin, for example. Thus if
our A parameter is sufficiently small that we are adding predominantly
noise components we expect those new components to be added fairly
uniformly across the doppler-shift — delay space. In our test cases we
found that comparing the doppler-shift distribution of new wavefield
components with a uniform distribution worked best. Specifically,
we perform a Kolmogorov-Smirnov (KS) test if there are at least 100
new non-zero wavefield components, to determine how closely their
doppler-shifts conform to a uniform distribution across the accessible
doppler space. If the KS statistic is above a threshold we decide that
in the current loop of H-FISTA (i.e., current A value) we added
primarily noise, discard the wavefield and use the wavefield obtained
with the previous A value as the sparse solution.

We note that the threshold statistic should be quite small, much
smaller than what would be acceptable to decide the distribution of
the doppler-shift values is indeed uniform. This is because there will
often still be a number of components being added that are above
the noise and part of the wavefield, and those components are likely
to not be uniformly distributed. In other words, we are not trying
to capture the moment that the distribution achieves uniformity, but
rather when it starts veering towards it. In practice we found that a
KS probability value of 100 worked well for our test cases.

With these two criteria defined we run H-FISTA, with progres-
sively decreasing A, until either the spatial or the sparsity stopping
criterion is met. Our software implementation allows the user to ad-
just the threshold levels for either of these criteria, or to disable either
of them.

2.4.2 H-FISTA algorithm summary

Here we summarise the whole H-FISTA algorithm we use to obtain
a sparse solution for the wavefield.
Input: Ay, - initial regularisation parameter
or instead
Ny - model components after the very first FISTA step
€ - scale factor for hard thresholding operator Ty
Nijter - number of iterations in each FISTA optimisation
na - A scaling factor
Step k:
- Set Ag = Ak-1/na
. Set A = 0 where h # 0, A, elsewhere
. Run FISTA
. Set A = 0 where h # 0, oo elsewhere
. Run FISTA
. Perform hard thresholding with threshold eA/L
. If any components zeroed, go back to step 4
. Check stopping criteria: exit or return to step 1

0NN B W~

2.5 Obtaining a dense wavefield

By design, H-FISTA aims to capture the vast majority of significant
signals in a sparse model, as described above. However, there is no
clear boundary between “signal” and “noise’” and users may be inter-
ested in wavefield components that are weaker than those identified



by H-FISTA. In particular we note that components that are clus-
tered around a certain location in the solution space (7, w) might be
individually insignificant but collectively significant. Consequently
we expect that most users will prefer a fully dense wavefield model
over the sparse solution that is provided by H-FISTA, and we have
therefore provided a mechanism for obtaining a dense model.

Our approach assumes that the sparse solution provided by H-
FISTA is close to the true minimum of the demerit. Thus it is likely
that the model is constrained well enough that a simple unconstrained
FISTA can be used to fit the wavefield to the data. That is, we use
FISTA with a fixed number of iterations Ngepse = 1000 and with
A = 0 to obtain a dense solution. This number of iterations is likely
to be sufficient as we start close to the minimum demerit, and can be
adjusted as needed. The result is a fully dense model of the wavefield,
with non-zero values at all locations (7, w) — even at negative values
of the delay.

2.5.1 Experimental application of the difference map to
densification

As mentioned in the introduction, the difference map algorithm is
commonly used for phase retrieval, but is not well suited to our
context because we have only very weak a priori support constraints
(i.e. causality). We did, however, try using the difference map as a
method of arriving at a dense wavefield, starting from the sparse
solution obtained with H-FISTA. At this stage a support constraint
is inappropriate because we want to obtain a non-zero estimate for
every point in the delay-doppler plane, but a strong constraint of
some kind is necessary in order to obtain a meaningful solution. By
design the sparse model arrived at with H-FISTA should contain all
of the statistically significant components of the wavefield, with the
remaining values being predominantly noise. In this circumstance
we can implement a histogram projection,’ as described by Elser
(2003), because we know the probability distribution function for
the noise.

In practice we found that this method did not perform as well as
the simpler approach described in the previous section: we found that
employing a noise-histogram projection suppressed the remaining,
weak signals in the wavefield — clearly an undesirable result. For
that reason we ultimately decided not to use the difference map for
densification.

3 APPLICATION TO SYNTHETIC DATA

We now demonstrate the usefulness and limitations of our method
using synthetic dynamic spectra. We start with an example of a noise-
free dynamic spectrum to demonstrate a perfect recovery of a sparse
wavefield using H-FISTA. We show the second case of a noise-free
data and use it to demonstrate some of the limitations of our method.
For a more realistic demonstration, we provide a third example in
which we add random noise to the wavefield recovered in the noise-
free case and use the resulting dynamic spectrum as input data for
H-FISTA.

7 This operator is a projection that forces components to follow a particular
statistical distribution
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3.1 Noise-free sparse wavefield
3.1.1 Example of successful recovery

As a limiting case, we start by generating a sparse wavefield with
647 non-zero components and no noise, i.e., all the other compo-
nents are exactly zero. The location of the non-zero components was
selected randomly within a mask consisting of four separate areas at
positive delays. Of all components within the mask, one in eight was
assigned a non-zero complex value, with both phase and modulus
drawn randomly. The corresponding dynamic spectrum is shown in
the top panel of Fig. 2.

Using this dynamic spectrum as input, we run the H-FISTA al-
gorithm as described in § 2. We note that in the noise-free case the
stopping criterion will not work if we successfully recover the sparse
wavefield as there will never be any components with uniformly dis-
tributed doppler-shifts in the solution. The sparsity-based criterion
will also not interrupt the loop as the total number of components
in the wavefield is below the default threshold. Instead, we used 80
iterations per FISTA run and adjusted the regularisation parameter A
by n, = 1.15 for every step of the outermost loop of the algorithm
until the number of non-zero components in the wavefield stabilises.
To ensure the stability of the algorithm, we ran a number of addi-
tional iterations through regularisation level A to check if the solution
remains stable.

In this case, we successfully recover the input wavefield and show
it in the bottom panel of Fig. 2. The middle panel shows an H-FISTA
diagnostic plot which shows several quantities.

The blue line is the base 10 logarithm of the demerit function. The
green line indicates the total number of non-zero components of the
wavefield. The orange line is the number of approved components,
i.e., components for which the regularisation parameter is 4 = 0. The
continuous vertical grey lines indicate a change of A value while the
thinner dotted grey lines indicate an end of a FISTA run and a hard
thresholding episode without adjusting A.

All these quantities are shown as a function of the global FISTA
iteration count. We note only some of the labels are provided to avoid
overlap.

A few features are notable in this diagnostic plot. First of all, for a
fixed A value, we typically see a significant increase in the number of
all components which is expected as the regularisation allows more
components after a new value of A is selected.

Secondly, most of the H-FISTA loops consist of only two FISTAs,
one with a specific value of A4 and one debiasing run. In other words,
most of the time, one application of hard-thresholding is sufficient
and it is common to see no components being removed by this pro-
cess. We also see that the number of components often drops during
FISTA iterations as the soft thresholding can reduce them to zero.
The overall trend of the number of components is not monotonic.

The third insight is that there are H-FISTA loops with significant
hard-thresholding episodes. These occur relatively early on, around
a 1000 FISTA steps into the phase retrieval. These are crucial for re-
moving the twin image from the wavefield estimate and such episodes
are often seen for the successful retrievals.

One feature visible in this diagnostic plot is specific to the noise-
free case. Namely, the number of components stabilises at a fixed
value during the iteration number 62 of H-FISTA and the demerit
plummets rapidly once all the components are correctly identified
and debiased. Such behaviour would not be seen in cases with noise.
The solution remains stable after finding all the components of the
input wavefield.

Finally, we note that due to the large dynamic range of the plot
the demerit appears to monotonically decrease through the whole
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Figure 2. Successful application of H-FISTA to simulated, noise-free data.
Top panel: the input dynamic spectrum, shown with inverted grey-scale in-
tensity. Middle panel: diagnostics of the H-FISTA loops as a function of the
total number of FISTA iterations and lambda iterations. The blue line shows
the logarithm of the demerit, the green line shows the number of non-zero
components in the wavefield model, and the orange line shows the number
of “approved” components. Thicker, continuous grey lines indicate a change
of A value, while the thinner, dotted grey lines mark the boundaries between
sequences of unregularised FISTA iterations. Bottom panel: the recovered
wavefield, shown as logy, (|h|2). Essentially perfect recovery of the wave-

field is achieved in this case, with the number of components reaching a
plateau and the demerit limited by machine precision.

procedure. As we noted earlier, FISTA does not guarantee that the
demerit behaves this way. There are oscillations of the demerit present
in this figure, however, they are too small to see with such a large
dynamic range.
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Figure 3. As figure 2, but with twice the number of non-zero components
in the input wavefield (see text, § 3.1.2). In contrast to figure 2 we can see
that: (i) the number of components in the model does not reach a plateau,
but continues to rise until the process is terminated; and, (ii) the best demerit
achieved is approximately eight orders of magnitude larger than the limit set
by machine precision. The resulting model is locally dense, and is a poor
rendition of the input wavefield. The lower panel shows the model obtained
after 20 H-FISTA iterations rather than for the last iteration.

3.1.2 Failed phase retrieval for noise-free case

Here we present an attempt at recovery of the wavefield from a noise-
free dynamic spectrum generated similarly as it was the case above
The only difference is that instead of one in eight, we now allow twice
as many components within the pre-selected regions to be non-zero.
That is, within the four regions of the wavefield seen in the bottom
panel of Fig. 2, one in four components are non-zero, resulting in a
wavefield that is less sparse locally.

Using the dynamic spectrum generated from this wavefield (shown
in the top panel of Fig. 3) we run H-FISTA using the same config-



uration as before. In this case, the algorithm never converges and
the number of components would keep increasingly indefinitely if
we disabled the stopping criteria. Eventually, the whole available
parameter space would be occupied by non-zero components. Our
diagnostic plot shown in the middle panel of Fig. 3 shows the di-
agnostic extending until the end of 33rd H-FISTA iteration. The
sparsity stopping criterion is triggered for the iteration number 34
and we discard that iteration. The other crucial difference between
this diagnostic and that for the previous case is that the hard thresh-
olding episodes are not as significant with only a small number of
components set to zero. As a result, the twin image is never fully
removed and the wavefield recovery does not succeed.

In the bottom panel Fig. 3, we present the wavefield during one
of the H-FISTA steps to illustrate this failure mode. Specifically, this
solution was obtained after 20 iterations. We chose this particular
wavefield as at this step the wavefield has 1558 non-zero components,
which is close to the true number of components in the wavefield
from which we generated the input dynamic spectrum. Three of the
four regions have non-zero components in the wavefield solution at
this stage. However, there are too many components present. This
problem is most evident in the crescent-shaped region. The region
now extends beyond the boundaries visible in the wavefield recovered
in the successful case (bottom panel of Fi