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ABSTRACT

The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionized interstellar
medium. It has previously been demonstrated that such holograms permit image reconstruc-
tion, in the sense that one can determine an approximation to the complex electric field values
as a function of Doppler shift and delay, but to date the quality of the reconstructions has been
poor. Here we report a substantial improvement in the method which we have achieved by
simultaneous optimization of the thousands of coefficients that describe the electric field. For
our test spectrum of PSR B0834+06 we find that the model provides an accurate representa-
tion of the data over the full 63 dB dynamic range of the observations: residual differences
between model and data are noise like. The advent of interstellar holography enables detailed
quantitative investigation of the interstellar radio-wave propagation paths for a given pulsar
at each epoch of observation. We illustrate this using our test data which show the scatter-
ing material to be structured and highly anisotropic. The temporal response of the medium
exhibits a scattering tail which extends to beyond 100 μs, and the centroid of the pulse at
this frequency and this epoch of observation is delayed by approximately 15 μs as a result of
multipath propagation in the interstellar medium.

Key words: scattering – turbulence – techniques: interferometric – pulsars: general – pulsars:
individual: B0834+06 – ISM: structure.

1 IN T RO D U C T I O N

With modern instrumentation pulsar dynamic spectra can be
recorded at high spectral and temporal resolution yielding a data
set with a large information content from just one observation. For
example, if we observe a pulsar for 1 h, sampling the spectrum with
1-kHz channels every 10 s, over a total bandwidth of 100 MHz, then
we have ∼4 × 107 independent flux measurements. Furthermore, if
the pulsar is bright and the telescope is large then each of these mea-
surements can have signal-to-noise ratio of order unity implying a
total information content of potentially ∼40 Mbit. This information
relates primarily to multipath scattering of the radio waves by the
ionized interstellar medium (ISM), as it is this scattering which
gives rise to the observed interference fringes. It may be that these
paths are determined by random irregularities – e.g. caused by tur-
bulence – in the ISM. In that case any given dynamic spectrum
contains information about those random irregularities, and there
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is no strong motivation to study the individual spectra in detail as
they reflect particular realizations of a stochastic process. However,
some pulsar dynamic spectra exhibit a high level of order in their
fringe patterns – see Rickett (1991) for an overview. This fact has
been emphasized by consideration of the two-dimensional power
spectra of the dynamic spectra, wherein power is often seen to
be concentrated in parabolic arcs and inverted arclets (Stinebring
et al. 2001). There is a consensus that this phenomenon arises di-
rectly from the geometry of the scattering process (Stinebring et al.
2001; Walker et al. 2004; Cordes et al. 2006), with waves scattered
through an angle θ experiencing a Doppler shift proportional to one
component of θ and a delay proportional to θ · θ . In cases where
the parabolae are very sharp it has been argued that the scatter-
ing is highly anisotropic (Walker et al. 2004; Cordes et al. 2006).
Sharply defined arcs/arclets also require that the scattering arises
in a region of small extent along the line-of-sight (Stinebring et al.
2001), so it is not distributed turbulence but discrete, localized struc-
tures which are responsible for these features. However, the phys-
ical nature of the scattering media remains obscure. Consequently
there is now some incentive to explore the information content in
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individual dynamic spectra, in order to build a detailed picture of the
scattering structures. Further motivation for investigating individual
dynamic spectra is provided by studies of the pulsars themselves:
if the properties of the scattering screen are accurately known it
is possible to use the screen for very high resolution imaging of
the pulsar magnetosphere (Wolszczan & Cordes 1987; Gwinn et al.
1997; Walker & Stinebring 2005, WS05 henceforth). Precision pul-
sar timing programs (e.g. Manchester 2008) also provide an incen-
tive for understanding the particular interstellar propagation paths
which contribute to individual observations – if the propagation
delays remain uncorrected in the data they constitute a potentially
large systematic error in pulse arrival time measurements.

It has previously been demonstrated that one can iteratively con-
struct a model of the electric field as a function of radio frequency
and time, starting from the observed dynamic spectrum (WS05). The
procedure for achieving this is largely equivalent to determining a
phase for the electric field in each pixel of the dynamic spectrum,
because a noisy estimate of the field amplitude is given directly by
forming the square root of the observed intensity. This situation is
common to the broad class of problems known as ‘phase-retrieval
problems’, which are well known in the optics literature (e.g. Fienup
1982). However, the method of solution demonstrated for pulsar dy-
namic spectra appears to be new; it exploits sparseness of the power
distribution in the Fourier domain, and a solution is obtained iter-
atively by adding discrete new field components in such a way as
to minimize the differences between the model dynamic spectrum
and the data. Conceptually the process has a strong similarity to the
CLEAN algorithm (Högbom 1974) which is commonly used in radio
astronomical imaging for deconvolving the synthesized telescope
beam from a ‘dirty’ image of the sky; CLEAN usually works well if
the image is only sparsely populated with emission. The connection
between the two algorithms is reinforced when we recognize that
determining the electric field from the dynamic spectrum is also
equivalent to a deconvolution. The dynamic spectrum as a function
of radio frequency and time is simply I(ν, t) = U∗ (ν, t) U(ν, t),
where U is the electric field; in the Fourier domain this relationship
becomes a convolution Ĩ = Ũ ∗ ⊗ Ũ and so we are deconvolv-
ing the Fourier transform of the electric field from its complex
conjugate.

Some comments about nomenclature are appropriate at this point.
Any process which allows us to reconstruct the electric field which
gave rise to a recorded fringe pattern is sensibly termed ‘hologra-
phy’, and the recorded fringe pattern (i.e. the dynamic spectrum in
our case) is the hologram. In the case considered here it is ‘digital
holography’ because the reconstruction is done in software, and
‘in-line’ because the object (i.e. the scattering screen in our case) is
transparent and sits in the beam which forms the reference wave. In-
line holography is sometimes called ‘Gabor holography’ because it
is the arrangement which was originally conceived by the inventor
of holography, Dennis Gabor.

To date the fidelity of electric field reconstructions from pulsar
dynamic spectra has been poor. Although the model of WS05 suc-
cessfully reproduces the general appearance of their test dynamic
spectrum there are substantial quantitative differences between the
model and the data. These errors are seen when the model ‘sec-
ondary spectrum’ (i.e. the power spectrum of the dynamic spec-
trum) is compared to the data: the data exhibit a dynamic range of
63 dB, but the difference between the WS05 model secondary spec-
trum and the secondary spectrum of the data has a dynamic range
of 47 dB, implying that the reconstruction has correctly captured
only the top 16 dB of the data. Here we report modifications to the
reconstruction process which have yielded dramatic improvements

to the accuracy of the electric field model; on the same test data set
as used by WS05 we find that our improved model captures the full
dynamic range of the data. These gains were achieved by simulta-
neous optimization of the thousands of parameters describing the
wave interference phenomenon, and by simultaneous optimization
of the hundreds of parameters which describe the intrinsic temporal
flux variations of the pulsar.

This paper is organized as follows: in the next section we de-
tail the improvements we have made to the reconstruction algo-
rithm described by WS05; in Section 3 we present the results we
have obtained, using the same test data employed by WS05 and in
Section 4 we consider what our test data tell us about the ISM, with
emphasis on the temporal response of the scattering medium.

2 O PTI MI ZATI ON O F THE E-FI ELD MODEL

In WS05 we described an algorithm for modelling the electric field
structure in the Fourier domain conjugate to the dynamic spectrum.
The latter is recorded as a function of radio frequency, ν, and time, t,
and the corresponding conjugate variables are delay, τ , and Doppler
shift, ω. The WS05 algorithm proceeds from a grid of noisy mea-
surements of the electric field envelope, |U(ν, t)|2, to a model of
Ũ (τ, ω) in terms of discrete wave components, j:

Ũ (τ, ω) =
∑

j

ũj δ(τ − τj ) δ(ω − ωj ), (1)

and the components (characterized by τj , ωj and the complex num-
ber ũj ) are chosen one-by-one so as to minimize the differences
between model and data. With ∼9000 components the model re-
ported by WS05 gives a good visual match to the data, but the
residuals are large in comparison with the noise level, implying
large systematic errors. An inspection of the differences between
the observed secondary spectrum (i.e. the power spectrum of the
dynamic spectrum) and the model secondary spectrum – the two
quantities shown in the lower panel of fig. 1 in WS05 – reveals
that the discrepancies occur predominantly at the same locations in
delay-Doppler space where there is already power present in both
model and data. This suggests that the systematic errors introduced
by the WS05 algorithm are not due to incorrectly placed compo-
nents (i.e. wrong τj , ωj ), or an insufficient number of components
in the model, but rather due to errors in determining the various ũj .

It was noted in WS05 that global optimization of the {ũj } is
desirable, in order to reduce systematic errors in the model, but
difficult to achieve because of the large number of free parameters
which would be involved in such an optimization. In particular
inversion of a 104 × 104 non-sparse matrix – which is perhaps the
most obvious approach to solution of the linearized least-squares
optimization – is computationally challenging. Furthermore, any
approach based on solution of the linearized problem would require
iteration in order to solve the full non-linear optimization problem.
Fortunately there are easier methods – see, for example, Nocedal
& Wright (1999) – and we have used one of these to optimize the
WS05 electric field model as we now describe.

The method which we employed is a quasi-Newton method, in
which a demerit function S is minimized by seeking successively
closer approximations to the solution of ∂S/∂xi = 0 for all pa-
rameters xi over which we wish to optimize. Newton’s method re-
quires knowledge of the Hessian (i.e. all the second derivatives
∂2S/∂xi∂xj ), which is computationally expensive when a large
number, N, of parameters is involved. By contrast, quasi-Newton
methods proceed by approximating the Hessian; information from
current and previous iterations is used to update the approximate
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Hessian for subsequent iterations yielding, in effect, a finite-
difference representation of the local curvature of S. The update
scheme which we used is the BFGS (Broyden–Fletcher–Goldfarb–
Shanno) update. Specifically, we used the L-BFGS-B algorithm (Byrd
et al. 1995), which is a ‘limited memory’ implementation of BFGS,
using line-search minimization, in which bounds are permitted on
the parameters xi . The term ‘limited memory’ here refers to the fact
that the N × N Hessian is replaced by the outer product of two m
× N matrices, with m being the number of prior iterations which
are employed in constructing the update. Because m ∼ a few, and m
does not grow with N, the storage requirements of the algorithm are
only modest and grow linearly with N. The L-BFGS-B code was writ-
ten by specialists in the field of numerical optimization; it is freely
available as a set of FORTRAN subroutines.1 In order to make use of
this code it is necessary for the user to supply routines which evalu-
ate the demerit function, S, and its partial derivatives, ∂S/∂xi , with
respect to all the parameters, xi , over which we wish to optimize.
Given these inputs the L-BFGS-B code will search for a minimum in
S. If a minimum is found by L-BFGS-B it is not guaranteed to be a
global minimum. For our application we used a model with two sets
of parameters: the various ũj , each of which is described by two
unbounded real variables, representing the real and imaginary parts,
and a set of positive-definite real numbers describing the intrinsic
pulsar flux as a function of time, {fk}. The inclusion of the various
parameters fk:fk ≥ 0 ∀ k demands that the optimization software be
able to handle variables which are bounded, as is the case for the
L-BFGS-B package. The WS05 algorithm does not attempt to solve
for the fk explicitly but simply applies a Fourier-domain filter to
the data in an attempt to remove the intrinsic pulsar flux variations.
Because there is no clear-cut distinction between intrinsic flux vari-
ations and those due to wave interference, the procedure used by
WS05 is quite crude and in the present work we use it only as a
starting point [as per item (i) in section 3.1 of WS05].

Our first attempt at improving on the WS05 approach was to take
the output of the WS05 algorithm and use it as the starting point
of an optimization with L-BFGS-B. The results were good, yielding a
model which captured much more of the dynamic range in the data,
and had a lower value of the reduced χ 2 statistic. This result was
encouraging, but it was clear that we could do better: the components
which are identified at each iteration in the WS05 algorithm depend
on the electric field model at that point, so the systematic errors
in the WS05 model are not completely eliminated by post facto
optimization – spurious components remain in the optimized model,
albeit at a low level. If, on the other hand, the electric field model
at each iteration of the WS05 algorithm is optimized (using L-BFGS-
B) then these spurious features can be minimized. This approach
has the additional benefit of simplicity in the processing of the
data, requiring only one pass through the data and one set of code.
We therefore implemented a new iterative decomposition algorithm
which employs the L-BFGS-B package to optimize the model ũj and
fk . The structure of the new algorithm is fundamentally similar to
that of WS05 and can be summarized as follows.

(i) Initialize the electric field model to Ũ = δ(τ )δ(ω).
(ii) Initialize the intrinsic pulsar flux estimates {fk} based on

Fourier filtering of I, the observed dynamic spectrum [see item (i)
in section 3.1 of WS05].

1 http://www.ece.northwestern.edu/∼nocedal

(iii) Start Of Loop: determine the residual between observed and
model dynamic spectra, R = I − U ∗U .

(iv) Estimate the increment δŨ = ŨR which we should add
to our electric field model to get a better match to the observed
dynamic spectrum.

(v) Identify the largest component(s) of δŨ and add to the model
Ũ (i.e. increase the ‘support’ of Ũ ).

(vi) Use L-BFGS-B to optimize the amplitude and phase of each of
the non-zero components ũj of Ũ .

(vii) Use L-BFGS-B to optimize the value of each of the {fk}.
(viii) Check to see if a stopping criterion is met. If not, go to

Start Of Loop.

In common with WS05, the model electric field is constructed on
the grid of equally spaced points which forms the discrete Fourier
space conjugate to the observed dynamic spectrum. The new algo-
rithm differs from WS05 in the following ways.

(i) The parameters fk (describing the intrinsic pulsar fluxes) are
optimized once for every 100 new field components which are
picked. The optimization over {fk} is done separately from that
over {ũj }.

(ii) The number of new electric field components picked at each
iteration is given by the integer part of 1 + Nc/N2, where Nc is the
current number of electric field components and we set N2 = 100.
So initially only one new component is picked at each iteration, and
when the model contains a large number of components the frac-
tional increase per iteration is 1/N2. This prescription is designed
to force the algorithm to pick its way carefully in the early stages
of modelling a given dynamic spectrum, so as to minimize errors,
while permitting rapid development of the details of the electric
field structure once a solid foundation for the model has been es-
tablished. The value of 100 which we chose for N2 is a compromise
between our desire for a high-fidelity model (which is favoured by
large values of N2) and time taken to compute the model (which
increases as N2 increases).

(iii) When Nc > 100 the algorithm is free to pick components in
the half-space τ < 0.

(iv) The algorithm terminates when χ 2
r , the reduced χ 2 (i.e. χ 2

per degree of freedom), reaches unity, or when χ 2
r reaches a mini-

mum – whichever occurs first.

In connection with item (iv) we note that it is not useful for the
algorithm to proceed below a χ 2

r value of unity because in this
regime the majority of new components which are added are noise.
Nor are these components easily interpreted – they are not, for
example, elements of the actual receiver voltage noise spectrum –
because the algorithm modulates the entire model spectrum with
the parameters fk which describe temporal variations in the flux of
the pulsar: these factors are appropriate for the pulsed signal but
inappropriate for noise, which mostly comes from the receiver and
from the sky. To satisfy our curiosity we performed a test in which
the algorithm was allowed to continue to the point of minimum χ 2

r ,
even though this value was below one. Although χ 2

r of the resulting
model was lower, the dynamic spectrum residuals contained obvious
structure and the model captured less of the dynamic range in the
data.

Because of the high dynamic range of the data it is important to
maintain high precision in the optimization, so we set the L-BFGS-B

parameter named ‘factr’ (which measures the precision in units of
machine precision) to the value 10. The number of previous steps
used in forming each BFGS update is m = 10.
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Figure 1. Data (top), model (middle) and residuals between data and model (bottom) for an observation of PSR B0834+06 in a 1.56-MHz band centred
on 321.00 MHz. The data were taken with the Arecibo radio telescope in conjunction with the WAPP (Wideband Arecibo Pulsar Processor) backend signal
processing units on MJD 53009; there are 1024 spectral channels, and 270 time samples each of 10-s duration. The left-hand panels show dynamic spectra,
while the right-hand panels show the corresponding secondary spectra (power spectra of the dynamic spectra); the range of the secondary spectra is ±50 mHz
in Doppler shift and ±327.6 μs in delay. Inverse grey-scale (black is peak intensity) is used in all cases; the transfer function is linear for the dynamic spectra,
and logarithmic for the secondary spectra. All secondary spectra shown here have the same transfer function; the transfer functions for dynamic spectra are
identical in the case of data and model, whereas the output range is stretched by a factor of 5 for the dynamic spectrum residuals in order to reveal their
structure. In comparison with fig. 1 of WS05 note that the present figure includes the modulating effects of the intrinsic pulsar flux variations. We have chosen
to display the full secondary spectra, including negative delays, even though these spectra are symmetric through the origin, so that the structure near zero
delay can be better seen.

3 R ESULTS

A direct comparison of the results of WS05 with the new algorithm
is possible by using the same test data as WS05 employed. Those
data are shown in Fig. 1, along with the model generated by the new
algorithm; both model and data are shown in the form of a dynamic
spectrum and its power spectrum (the ‘secondary spectrum’). The
model was generated using the algorithm described in Section 2.
Fig. 1 also shows the residuals between data and model dynamic
spectra, and the power spectrum of those residuals; the residuals
appear noise like in both panels. Some quantitative measures of the
success of the new algorithm are appropriate. The new algorithm

achieves a reduced chi-squared value of χ 2
r = 1.00 (this was the stop-

ping criterion which was reached first) versus χ 2
r = 1.19 achieved

by WS05, and it does so with only 8000 electric field components
versus 8720 in WS05. Note, however, that the new algorithm does
employ an additional 270 real numbers – one for each time sam-
ple – to describe the intrinsic pulsar flux variation with time; these
numbers were in effect fixed in the WS05 algorithm by a Fourier-
plane filter acting on the input data. Subtracting the model dynamic
spectrum from the data, and then forming the power spectrum of the
residuals gives a sensitive test of the fidelity of the model because it
picks out correlated errors in the dynamic spectrum model. For the
new algorithm the largest value of the residual power is only 11 dB
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Figure 2. Histogram of the number of pixels per bin (of width 6 × 10−8) as
a function of power for the two-dimensional power spectrum of the residual
between the model dynamic spectrum and the data (solid line). Also shown
is the corresponding histogram for the data (dashed line). The residual
power distribution corresponds very closely to the expected exponential
noise distribution. The mean power in the residuals is slightly less than
that calculated from the data because the latter estimate includes a small
contribution from signals which are incorporated into the model.

above the mean noise power in the data, whereas the peak power
in both data and model is 63 dB above the mean noise power in the
data. Thus the algorithm is certainly free of systematic errors over
a range of 52 dB.

In fact the new algorithm has achieved noise-limited performance
and is capturing the full dynamic range of the data; to see this
we need only examine the statistics of the noise power, shown
as a histogram in Fig. 2. If the residuals were purely noise like
then the expected probability distribution function would be an
exponential, because the residual power is the sum of the squares
of two independent variables each of which has the same Gaussian
distribution. We can see from Fig. 2 that the residuals conform
closely to this expectation; we can also see that the peak residual is
not introduced by any systematic error in the modelling but rather
it is simply the tail of the noise distribution. The residuals actually
exhibit a slightly lower noise level than the data (dashed line); this
can be understood by reference to Fig. 1. The noise in the data is
estimated from the floor power level in the secondary spectrum,
specifically an area in the corner of the secondary spectrum (away
from any obvious signal power) is chosen and the mean power
over this area is computed. The model secondary spectrum also
exhibits a floor power level, even though the model is intended to
represent ‘signal’ rather than ‘noise’; this power is not present in the
residual dynamic spectrum so the mean power level in the residuals
is slightly lower than in the data.

The bottom left-hand panel in Fig. 1 shows slightly enhanced
residuals at the extremes of the radio-frequency band covered by
our data. Over this small fractional bandwidth (∼0.5 per cent) the
main noise contributions (receiver noise and sky noise) in the data
should be white to a good approximation. It is therefore likely that
these enhanced residuals are due to inexact bandpass correction,
as this correction is largest near the edges of the band. It may be
possible to gain improved knowledge of the bandpass, hence better
calibration, by modelling the bandpass shape as part of our fitting
procedure – similar to our modelling of the intrinsic pulsar fluxes,
{fk}, but in the spectral dimension. We have not attempted this.

The model electric field strength determined by our new algo-
rithm is shown in Fig. 3. Visually this result is similar to that obtained
by WS05 (their fig. 2), with the notable exception that in WS05 all

Figure 3. Model electric field amplitudes corresponding to the model spec-
tra shown in Fig. 1. Here the amplitudes are shown in grey-scale, as a
function of Doppler shift and delay, with a logarithmic transfer function;
peak intensity is black. The Doppler shift ranges over a total of 100 mHz
(270 pixel) and the delay ranges over a total of 655 μs (1024 pixel). Abso-
lute physical values of delay and Doppler shift are in principle unknown
but it appears sensible to assign the origin of physical coordinates to the
centre of the image (which is the peak field amplitude) in this particular
case. It is evident from this figure that the image has been well separated
from its complex conjugate, which would appear as an inverted parabola.
Also notable is the low level of power around zero delay, which indicates
that the intrinsic pulsar flux modulations have been accurately determined
by the algorithm.

field amplitudes were fixed at zero in the region τ < 0 (so that region
is not displayed in their fig. 2). In-line holography generally involves
a certain amount of confusion between the image and its conjugate,
because the observable quantity is usually the intensity U∗U which
is invariant under the replacement U → U∗. In the present context
the conjugate image appears at negative delays, because forming the
complex conjugate of exp[2πi(ντj + ωj t)] is equivalent to making
the replacements τj → − τ j, ωj → − ωj. In our Fig. 3 it can be seen
that there is little trace of an inverted parabola in the lower half of
the figure – only weak components can be seen in the region τ < 0
– indicating minor confusion between the image and its conjugate
(see also Section 4.1). The ability of the algorithm to reject the
conjugate image rests entirely on the asymmetry between the two
images which is introduced by the requirement τ ≥ 0 for each of the
first 100 field components [item (iii) in Section 2]. Consequently
the clean separation which is achieved in the final image is another
indication of the low level of systematic errors inherent in the new
algorithm. In the same vein we note that there is little power evident
in Fig. 3 near the τ = 0 locus (a horizontal line tangent to the apex
of the parabola), indicating that the intrinsic pulsar flux variations,
described by the various fk , have been accurately modelled.

As noted in WS05, for a model electric field which is a sum
of waves ũj exp[2πi(ντj + ωj t)] the model intensity distribution,
U∗U, consists of interference fringes whose spectral and temporal
frequencies are the differences between the various τj and the var-
ious ωj , respectively, and those differences are preserved under the
mappings τ → τ + τ 0, ω → ω + ω0. It is this model intensity
distribution, not the electric field per se, which is constrained by the
data. Therefore, the image coordinates (τ , ω) used in Fig. 3 have
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an unknown offset relative to the true physical values of the delay
and Doppler shift. However, in Fig. 3 the largest amplitude field
component is found at the origin, there is no significant power in
the region τ < 0, and for the most part power is distributed along a
single parabolic locus which is symmetric about the origin. These
facts are all consistent with a simple picture in which the origin in
Fig. 3 corresponds to an undeviated wave, suggesting that the offset
between image coordinates and physical coordinates is small in this
case. Henceforth we shall assume that the offset in Fig. 3 is zero so
that (τ , ω) can be interpreted as physical quantities.

Having now reached the point where we can form models which
are a good match to the data it is appropriate to draw some inferences
about the properties of the scattering medium which gives rise
to the data shown in Fig. 1. Excepting the temporal analysis in
Section 4.1 our discussion is only qualitative; that is because we
have constructed our holographic image in delay-Doppler space
(i.e. the Fourier space conjugate to the frequency-time space in
which the data are recorded), whereas progress in understanding
the scattering medium relies on a knowledge of the image in two-
dimensional spatial (angular) coordinates and there is no simple
way of proceeding from the former to the latter.

4 PRO PERTIES OF THE SCATTERING

M E D I U M

An important qualitative aspect of Fig. 3 is that power in the model
electric field is tightly concentrated around a parabolic locus, with
delay proportional to the square of the Doppler shift; this much
was already evident in WS05. This confirms that the underlying
scattering is highly anisotropic, with a scattered image which is very
much longer than it is wide – a conclusion which has previously
been arrived at from consideration of the properties of observed
secondary spectra for this and other pulsars (Walker et al. 2004;
Cordes et al. 2006; Trang & Rickett 2007).

We can also see from Fig. 3 that some parts of the parabola show
high intensity levels while others are almost completely devoid of
signal, and in some places the high–low transitions are fairly abrupt.
Abrupt changes are suggestive of well-defined boundaries to the
scattering regions. Four intensity concentrations are seen at large
delay and positive Doppler shift; these correspond to the features
named ‘A, B, C, D’ by Hill et al. (2005) in a secondary spectrum
analysis of data spanning more than three weeks. These features
are presumably due to localized plasma concentrations; it is not
yet clear whether these concentrations are diffracting or refracting
the radio waves into the telescope. Feature ‘A’ lies significantly
above the locus of the parabola; this extra delay could be the wave-
speed (dispersive) delay of a high column-density structure – an
interpretation which can in future be tested by comparing data at
two different frequencies obtained at the same epoch.

4.1 Temporal response of the medium

Inferring the spatial structure of the scattering medium from our
image of Ũ is not a simple exercise and it is beyond the scope of
this paper to attempt an in-depth analysis. On the other hand, the
holographic image shown in Fig. 3 is well suited to determining the
temporal response of the medium which is introduced by multipath
propagation. The electric field amplitude as a function of delay, τ ,
and observing time, t, can be determined by forming the inverse

Figure 4. The mean intensity impulse response of the scattering medium:
top panel, as determined from the holographic image shown in Fig. 3; bottom
panel, as determined from the holographic image shown in Fig. 3 with low
amplitude coefficients (|ũk | < 0.004) set to zero.

Fourier transform of equation (1) with respect to ω:

U(τ, t) =
∑

j

ũj δ(τ − τj ) exp
(
2πiωj t

)
(2)

(cf. equations 1 and 2 of WS05). The corresponding field intensity
is

I(τ, t) = U∗U = A(τ ) + B(τ, t), (3)

where

B(τ, t) :=
∑
j 	=k

ũ∗
j ũk δ(τ − τj ) δ(τ − τk) exp

[
2πi(ωk − ωj )t

]
(4)

describes the beating between waves of differing Doppler shifts (but
the same delay) and

A(τ ) :=
∑

j

ũ∗
j ũj δ(τ − τj )

=
∫

dω

∣∣∣Ũ (τ, ω)
∣∣∣2

(5)

is the mean intensity impulse response function of the scattering
medium. The function A(τ ) convolved with the intrinsic pulse pro-
file yields (up to a normalization factor) the average pulse profile
for this observation. For our image, Ũ , the mean intensity impulse
response, A, is shown in the top panel of Fig. 4. For those delays
where Ũ includes one wave component which has a much larger
amplitude than the other components at that delay the beat terms
will all be relatively small and |B| will be small compared with A.
In general, however, B is not negligible; we defer consideration of
B to later in this section.
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There are several recognizable features of the A(τ ) determined
from our model: the peak at zero delay is in accord with the physical
expectation that a bright image should form at the delay minimum;
the parabolic arc seen in Fig. 3 is responsible for the extended
scattering tail stretching out beyond τ = 100 μs and the peaks
near τ = 140, 160, 230, 270 μs in Fig. 4 correspond to the features
labelled ‘A, B, C, D’, respectively, by Hill et al. (2005) – these
features are seen as discrete intensity concentrations at large delay
and positive Doppler shift in Fig. 3.

At large negative delays in the top panel of Fig. 4 we see an
intensity level ∼10−5, whereas physically we expect zero intensity
because wave propagation can only introduce positive group-delays.
This is simply due to noise in the reconstruction; note also that a
similar floor intensity level is present at large positive delays. The
model electric field inevitably includes noise because there is no
clear distinction between noise and signal contributions to the input
data. By setting the low amplitude coefficients of Ũ to zero we are
able to eliminate much of this intensity floor. Specifically, setting
the model coefficients ũj to zero for |ũj | < 0.004 preserves all of
the recognizable signal features in A(τ ) but largely removes the
noise floor; the result is shown in the lower panel of Fig. 4.

At small negative delays the intensity level in Fig. 4 is up to
an order of magnitude higher than the noise floor. We interpret
this as evidence of low-level confusion between the holographic
image, U, and its complex conjugate, U∗ – as noted in Section 3 we
expect this confusion to be present at some level. For applications
where suppression of the conjugate image is critical it is possible
to undertake the holographic image reconstruction entirely in the
positive-delay half-space, but we note that this approach is expected
to be problematic if the brightest image is not the image with the
least delay (WS05).

A useful characterization of the temporal response of the medium
is the intensity-weighted average delay, �, defined by

�(t) ≡
∫ ∞

0 dτ τ I(τ, t)∫ ∞
0 dτ I(τ, t)

. (6)

The time average of this quantity, 〈�〉, provides us with a simple
gauge of the influence of wave propagation on pulse arrival time
for this line-of-sight for the particular time and frequency intervals
covered by our data. For the image Ũ shown in Fig. 3 we compute
〈�〉 � 17 μs. However, this value is clearly an overestimate because
noise in the reconstruction – the noise floor seen in the top panel of
Fig. 4 – biases the estimate upward. A better estimate is available if
we employ the image Ũ with low-amplitude coefficients set to zero
(as per the lower panel in Fig. 4); this yields the result 〈�〉� 15.2 μs.
Substantial contributions to this mean delay arise from the whole
region 0 < τ < 120 μs, with relatively minor contributions from
each of the discrete features – ‘A, B, C, D’ of Hill et al. (2005) – seen
at large delay; together these features contribute about 10 per cent
of the measured 〈�〉. There is no contribution from the artefacts
associated with the conjugate image as these occur in the region
τ < 0 and are excluded by the definition given in equation (6).

Finally, we return to the influence of the beat terms, described
by B; these terms cause the propagation delay �(t) to vary over
the course of our 45 min stretch of data. As noted earlier, the beat
terms are not negligible and for our data we find that there are
substantial variations in � of ±40 per cent around the mean value
〈�〉; these variations are plotted in Fig. 5. Large gradients in �(t)
are seen in Fig. 5 so that, for example, a pulse arrival time mea-
surement at the start of our observations and one taken 5 min later
would have differed by approximately 11 μs. We emphasize that the
behaviour seen in Fig. 5 is specific to this line-of-sight and to the

Figure 5. The interstellar propagation delay, �(t) (solid line), as determined
from the holographic image shown in Fig. 3 with low amplitude coefficients
(|ũk | < 0.004) set to zero. Also shown is the (unweighted) mean delay,
〈�〉 = 15.2 μs (dashed line), for the observation. The dotted line shows a
weighted mean (14.8 μs), with the weight for each time sample being equal
to the intrinsic pulsar flux, fk , as determined by the modelling procedure
described in Section 2 of this paper.

particular set of frequencies covered in our data. We expect that the
temporal variations in � would have been smaller if our data had
covered a greater bandwidth than the 1.56 MHz used here. With a
broader observing bandwidth we would have finer delay resolution
in our image Ũ , so we would be better able to separate components
which have similar values of τ and these separated components
would not beat (see equation 4), so the importance of B would di-
minish. It is beyond the scope of this paper to attempt a detailed
analysis of delay variations; here we simply note that the type of be-
haviour seen in Fig. 5 is potentially problematic for precision pulsar
timing.

5 D ISCUSSION

Several aspects of Fig. 3 indicate that distributed Kolmogorov tur-
bulence is not a good model for this scattering medium. The first
point to make is that the scattering is not distributed along the line-
of-sight, but is localized. Scattering at different distances along the
line-of-sight would spread power over a range of different parabolic
loci (Stinebring et al. 2001), in contrast to the single well-defined
locus seen in Fig. 3. This tells us that the line-of-sight depth, z, of
the scattering medium should be no more than a few per cent of the
distance to the pulsar, say z � 1020 cm. Secondly, the concentration
of power along a single parabolic locus tells us that the scattering
must be highly anisotropic, because scattering occurring in a range
of azimuthal angles (i.e. different planes on the sky) would also
spread power over a range of different parabolic loci (e.g. Walker
et al. 2004). In addition, the direction of the scattering must be the
same, to within a few degrees, right across the scattering structure.
This requirement becomes harder for theoretical models to satisfy
as the necessary coherence length increases and this argues for, but
does not demand, a line-of-sight dimension that is not very much
greater than the observed transverse extent – say z � 1015 cm. Co-
herence on large scales does not in itself rule out the possibility
of a turbulent structure, because the coherence relates to only one
dimension: any turbulence must be restricted to two dimensions.
Thirdly, the overall envelope of the power distribution along the
parabola, including the discrete features (‘A, B, C, D’) identified by
Hill et al. (2005), is more structured than would be expected in a
pure Kolmogorov spectrum.
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If we ignore the discrete features ‘A, B, C, D’ and concentrate
on the continuously illuminated portion of the parabola around the
origin in Fig. 3 we can ask whether or not this particular region
is consistent with localized, highly anisotropic Kolmogorov turbu-
lence. To address this question we can compare the impulse response
manifest in our data (Fig. 4) with theoretical results for the impulse
response of a thin scattering screen (Lee & Jokipii 1975). Only a
broad-brush comparison is possible because the theory is couched
in terms of the ensemble-average properties of the medium whereas
our data are effectively in the ‘snapshot’ regime (i.e. no averaging
over phases) – see Narayan & Goodman (1989) for a discussion of
the physics of these regimes. The data shown in Fig. 4 exhibit a
rapid, roughly exponential decline out to a delay τ � 30 μs, with
much slower subsequent fall off until the end of the parabola is
reached at τ ∼ 100 μs. An exponential decline at small delays cor-
responds to a phase structure function which varies quadratically
at large separations, and in turn that is broadly consistent with a
Kolmogorov spectrum of electron density inhomogeneities on large
scales. However, the break to a relatively flat impulse response at τ

� 30 μs shows that there is more structure on small spatial scales
than would be expected for a single power-law spectrum of inho-
mogeneities.

Over an interval of several months we expect PSR B0834+06 to
exhibit changes δ〈�〉 in the mean delay 〈�〉 as the pulsar moves be-
hind different regions of the scattering screen. The electric field im-
age shown in Fig. 3 clearly demonstrates that this particular screen
has a very patchy distribution of scattering material so that obser-
vations made at other epochs are expected to exhibit quite different
distributions of power along the parabolic locus. As a hypothetical
example we can imagine that at another epoch the holographic im-
age might look like Fig. 3 at positive Doppler shifts, but show no
scattered power at negative Doppler shifts; in this case the mean
delay would be roughly half of what we have measured. We there-
fore expect that over an interval of several months PSR B0834+06
will exhibit changes δ〈�〉 ∼ 〈�〉. The anticipated delay changes
δ〈�〉 ∼ 15 μs are very large compared to the precision with which
millisecond pulsars can be timed (e.g. van Straten et al. 2001).
B0834+06 is not a millisecond pulsar, and even if it were it would
not be used for precision timing experiments precisely because this
line-of-sight is known to exhibit very striking effects from multipath
propagation in the ISM. It is, however, salutary to see how large
the influence of the ISM can be on pulse arrival times. Moreover,
the line-of-sight to B0834+06, although unusual, is not unique –
B1133+16 and B1929+10, for example, appear to show similar,
striking effects (Putney & Stinebring 2006). Nor is it a very distant
pulsar, so the scattering structures which have been revealed in the
present data are probably abundant in the ISM. B0834+06 is, how-
ever, a relatively bright source and other fainter pulsars might be
viewed through similar scattering media without being recognized
as such because the scattered intensity is small. The data of Putney &
Stinebring (2006) support these points as many of the pulsars which
they studied appear to show strong scattering arising from multiple,
physically distinct regions, and they note that very sensitive obser-
vations are required in order to reveal the presence of these media.
Furthermore, the very structured nature of the scattering medium
seen in Fig. 3 tells us that a pulsar which shows no measurable
interstellar timing delays at one epoch could exhibit large delays
at other epochs. Presumably interstellar scattering media exhibit a
broad range of physical properties, with a correspondingly broad
range of influence on pulse arrival time measurements, and for any

given pulsar we should not ask ourselves ‘whether’ but ‘at what
level’ is an extended scattering tail present?

Without a firm description of the inhomogeneity spectrum we
are not able to predict what interstellar timing perturbation would
be measured, for this pulsar and this epoch, at radio frequencies
outside the 1.56 MHz observing band of the present data. It is likely
that the interstellar delays would be smaller at higher frequencies
– because the cold plasma refractive index declines with frequency
and so the scattering angles decrease at higher frequencies for any
given plasma structure – but we cannot say how much smaller. From
data spanning many months, Hemberger & Stinebring (2008) have
used a secondary spectrum analysis to estimate multipath propaga-
tion delays at frequencies between 1150 and 1500 MHz, measuring
values which range from one to two orders of magnitude smaller
than our estimate of 〈�〉. Their data refer to a different line-of-sight
(PSR B1737+13) and cannot be directly compared with our result;
however, their frequency coverage is great enough to allow them
to estimate the frequency dependence of the propagation delay for
their observations. They find that the propagation delay is consistent
with a power-law frequency dependence of the mean propagation
delay, with power-law index −3.6 ± 0.2 – slightly less steep than
expected for distributed Kolmogorov turbulence (power-law index
−4.4). One potential complicating factor with the Hemberger &
Stinebring (2008) data on B1737+13 is that the observed time evo-
lution of the interstellar delay is reminiscent of a lens-like event
(see e.g. Foster & Cordes 1990), in which case the delays measured
at different frequencies depend on the (unknown) column-density
profile of the lens.

The possibility of large, transient interstellar propagation delays
makes it prudent to quantify the interstellar delays at each epoch
where an accurate pulsar timing measurement is desired. In this
paper we have shown how those delays can be quantified when a
recording of the pulsar dynamic spectrum is available. The tech-
nique we have presented has the merit of being able to accurately
determine the relative propagation delays, even for complex scat-
tering geometries, at any epoch of observation. The technique does
have its limitations though. Foremost among these is that the de-
lays are all relative measurements and the origin of coordinates (i.e.
τ = 0) must be determined by some other means; removing this
limitation is a high priority goal for future work.

For cases where the great majority of the scattering arises in a
single, thin screen we anticipate that the key to progress lies in
constructing the holographic image by modelling the structure of
the phase screen, rather than forming the image Ũ in delay-Doppler
space as we have done in this paper. Modelling the phase screen
is computationally much more demanding but it has several ad-
vantages over the approach we have taken here. First, it allows
the interstellar propagation delays to be determined on an absolute
scale, because the propagation geometry is fixed in the model. Sec-
ondly, it allows us to calculate the wave field for various different
observer locations, thus permitting direct comparisons between dif-
ferent observing epochs and between different telescopes (e.g. Very
Long Baseline Interferometry) at the same epoch. Thirdly, it per-
mits direct comparison between data at different frequencies. And
by the same token there would be no difficulty modelling data taken
over a single, wide bandwidth even if the phase screen has large
spatial variations in wave dispersion. By contrast the present ap-
proach is not ideal for wide bandwidth data because of smearing
due to differential dispersive delays, across the band, from a range
of dispersion measures. Finally, if we model the phase screen itself
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the results immediately provide powerful constraints on models of
the scattering medium because the phase structure tells us the elec-
tron column-density structure and, if full polarization information
is recorded, the line-of-sight magnetic field.

6 C O N C L U S I O N S

Interstellar holography is a precise new technique which affords
detailed insights into the interstellar propagation of radio pulsar
signals. The holographic image reconstructed from our test data
reveals a complex scattering structure with highly anisotropic in-
homogeneities; its physical nature is unclear at present. Holo-
graphic imaging can be used to determine the influence of mul-
tipath propagation on pulse arrival time measurements and thus to
correct for these propagation delays. Interstellar propagation delays
are unpredictable and can potentially make large contributions to
the systematic errors in pulse arrival time measurements. It is there-
fore prudent to make provision for holography in every instance
where an accurate measurement of the unperturbed arrival time is
desired.
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