HOLOGRAPHIC TIMING MARK WALKER (MANLY ASTROPHYSICS) #### OVERVIEW - * THE HORRIBLE ISM - * TIME DOMAIN VS. FREQUENCY DOMAIN - * YOU NEED CYCLIC SPECTROSCOPY - * B1937+21 CASE STUDY - * I NEED AN ENORMOUS COMPUTER #### THE HORRIBLE ISM MEANS ... - * IMPULSE RESPONSE FUNCTION IS COMPLICATED - * IRF WIDTH ("SCATTERING TIME") IS AN INADEQUATE REPRESENTATION OF THIS FUNCTION - * MAY HAVE SIGNIFICANT FLUX AT MUCH LARGER DELAYS - * IRF SPECTRAL VARIATION IS UNPREDICTABLE - * IRF TEMPORAL EVOLUTION IS UNPREDICTABLE AND RAPID - * ESPECIALLY SO AT HIGH FREQUENCIES - * MUCH LARGER EFFECT THAN ANTICIPATED GW SIGNAL - * NEED TO CHARACTERISE FOR EVERY T.O.A. ## TIME- OR FREQUENCY-DOMAIN? $\Delta T \sim W \times \Delta F / F \leq 10 \text{ ns}$ $\Delta F / F \leq 0.0001$ NOT JUST A S/N PROBLEM: NEED DECONVOLUTION OF PULSE PROFILE TO THIS LEVEL OF DETAIL MUCH EASIER TO WORK IN FREQUENCY DOMAIN: DECONVOLUTION -> DIVISION $1 \mu s$ \rightarrow 1 MHz ΔF \rightarrow $\sqrt{(F \Delta F)}$ #### INTERSTELLAR HOLOGRAPHY IN 2010 $$S_z(f, \Omega) = H(f+\Omega/2) H^*(f-\Omega/2) S_0(f, \Omega)$$ CYCLIC SPECTRUM: MANIFESTS PHASES EXPLICITLY -> GET $\mathsf{H}(f)$ EVERY ~ 10 SECONDS - + NO PHASE RETRIEVAL REQUIRED - + MAXIMUM LAG NOT LIMED BY PULSE WIDTH - + GET INTRINSIC (UNSCRITTERED) PULSE PROFILE - + DELAYS ARE RELETIVE TO TEMPLATE PULSE PROFILE - + RESIDUAL IN UNCERTAINTY CAPTURED IN $\mathsf{H}(f)$ #### HOLOGRAPHY OF B1937+21 (PAUL, WILLEM) $$S_z(f, \Omega) = H(f+\Omega/2) H^*(f-\Omega/2) S_0(\Omega)$$ #### **BOOTSTRAP:** USE SCATTERED PROFILE FOR S₀ DETERMINE H IMPROVE ESTIMATE OF S_0 IMPROVE ESTIMATE OF H ... (REPEAT). #### HOLOGRAPHY OF B1937+21 (PAUL, WILLEM) $$S_z(f, \Omega) = H(f+\Omega/2) H^*(f-\Omega/2) S_0(\Omega)$$ ### PULSE PROFILES ## PULSE PROFILES ### PULSE PROFILES ## DELAY-DOPPLER IMAGES DELAY ## DELAY-DOPPLER IMAGES DELAY ## IMPULSE RESPONSE ## IMPULSE RESPONSE #### IMPULSE RESPONSE | ЕРОСН | MJD | IRF CENTROID | |-------|-------|------------------| | 1 | 53791 | 42979 NS | | 2 | 53847 | 12093 NS | | ЗА | 53873 | * 6824 NS | | 3в | 53873 | 6782 NS | #### I NEED AN ENORMOUS COMPUTER MODEL: THIN PHASE SCREEN ARRAY DIMENSIONS $\sim 10^6$ 10^{14} CM @ RESN. 10^8 CM 1D: NO PROBLEM 2D: NO GO BUT ARRAY SIZE ~ 104 OK -> L-BAND #### SUMMARY - * THE ISM IS BEAUTIFUL, ENIGMATIC AND PERTURBING - * MUCH LARGER EFFECT THAN ANTICIPATED GW SIGNAL - * NEED TO PRECISELY CHARACTERISE THE EFFECTS OF PROPAGATION AT THE EPOCH OF EACH PULSE TOA - \star FIRST STEP: CYCLIC SPECTROSCOPY GIVES $\mathsf{H}(f,\mathsf{t})$ - * MEASURED H(f,t) for B1937+21 (3 EPOCHS, 430 MHz) - * BROADENING OUT TO HUNDREDS OF MICROSEC - * AND SHIFTS UP TO 40 MICROSEC (EPHEMERIS ERROR) - * SECOND STEP: BESPOKE PHYSICAL MODELS OF TRANSFER - * IMPOSSIBLE TO COMPUTE 2D/3D MODELS FOR LOW FREQ - * MAY BE OK AT L-BAND. HOPE SCREENS ARE FROZEN!