HOLOGRAPHIC TIMING

MARK WALKER

(MANLY ASTROPHYSICS)

OVERVIEW

- * THE HORRIBLE ISM
- * TIME DOMAIN VS. FREQUENCY DOMAIN
- * YOU NEED CYCLIC SPECTROSCOPY
 - * B1937+21 CASE STUDY
- * I NEED AN ENORMOUS COMPUTER

THE HORRIBLE ISM MEANS ...

- * IMPULSE RESPONSE FUNCTION IS COMPLICATED
- * IRF WIDTH ("SCATTERING TIME") IS AN INADEQUATE REPRESENTATION OF THIS FUNCTION
 - * MAY HAVE SIGNIFICANT FLUX AT MUCH LARGER DELAYS
- * IRF SPECTRAL VARIATION IS UNPREDICTABLE
- * IRF TEMPORAL EVOLUTION IS UNPREDICTABLE AND RAPID
 - * ESPECIALLY SO AT HIGH FREQUENCIES
- * MUCH LARGER EFFECT THAN ANTICIPATED GW SIGNAL
- * NEED TO CHARACTERISE FOR EVERY T.O.A.

TIME- OR FREQUENCY-DOMAIN?

 $\Delta T \sim W \times \Delta F / F \leq 10 \text{ ns}$

 $\Delta F / F \leq 0.0001$

NOT JUST A S/N PROBLEM:
NEED DECONVOLUTION OF PULSE PROFILE
TO THIS LEVEL OF DETAIL

MUCH EASIER TO WORK IN FREQUENCY DOMAIN:

DECONVOLUTION -> DIVISION

 $1 \mu s$ \rightarrow 1 MHz

 ΔF \rightarrow $\sqrt{(F \Delta F)}$

INTERSTELLAR HOLOGRAPHY IN 2010

$$S_z(f, \Omega) = H(f+\Omega/2) H^*(f-\Omega/2) S_0(f, \Omega)$$

CYCLIC SPECTRUM: MANIFESTS PHASES EXPLICITLY -> GET $\mathsf{H}(f)$ EVERY ~ 10 SECONDS

- + NO PHASE RETRIEVAL REQUIRED
- + MAXIMUM LAG NOT LIMED BY PULSE WIDTH
- + GET INTRINSIC (UNSCRITTERED) PULSE PROFILE
- + DELAYS ARE RELETIVE TO TEMPLATE PULSE PROFILE
- + RESIDUAL IN UNCERTAINTY CAPTURED IN $\mathsf{H}(f)$

HOLOGRAPHY OF B1937+21

(PAUL, WILLEM)

$$S_z(f, \Omega) = H(f+\Omega/2) H^*(f-\Omega/2) S_0(\Omega)$$

BOOTSTRAP:

USE SCATTERED PROFILE FOR S₀
DETERMINE H

IMPROVE ESTIMATE OF S_0 IMPROVE ESTIMATE OF H ... (REPEAT).

HOLOGRAPHY OF B1937+21

(PAUL, WILLEM)

$$S_z(f, \Omega) = H(f+\Omega/2) H^*(f-\Omega/2) S_0(\Omega)$$

PULSE PROFILES

PULSE PROFILES

PULSE PROFILES

DELAY-DOPPLER IMAGES

DELAY

DELAY-DOPPLER IMAGES

DELAY

IMPULSE RESPONSE

IMPULSE RESPONSE

IMPULSE RESPONSE

ЕРОСН	MJD	IRF CENTROID
1	53791	42979 NS
2	53847	12093 NS
ЗА	53873	* 6824 NS
3в	53873	6782 NS

I NEED AN ENORMOUS COMPUTER

MODEL: THIN PHASE SCREEN

ARRAY DIMENSIONS $\sim 10^6$ 10^{14} CM @ RESN. 10^8 CM

1D: NO PROBLEM

2D: NO GO

BUT ARRAY SIZE ~ 104 OK -> L-BAND

SUMMARY

- * THE ISM IS BEAUTIFUL, ENIGMATIC AND PERTURBING
- * MUCH LARGER EFFECT THAN ANTICIPATED GW SIGNAL
- * NEED TO PRECISELY CHARACTERISE THE EFFECTS OF PROPAGATION AT THE EPOCH OF EACH PULSE TOA
- \star FIRST STEP: CYCLIC SPECTROSCOPY GIVES $\mathsf{H}(f,\mathsf{t})$
- * MEASURED H(f,t) for B1937+21 (3 EPOCHS, 430 MHz)
 - * BROADENING OUT TO HUNDREDS OF MICROSEC
 - * AND SHIFTS UP TO 40 MICROSEC (EPHEMERIS ERROR)
- * SECOND STEP: BESPOKE PHYSICAL MODELS OF TRANSFER
- * IMPOSSIBLE TO COMPUTE 2D/3D MODELS FOR LOW FREQ
 - * MAY BE OK AT L-BAND. HOPE SCREENS ARE FROZEN!