A cometary interpretation of G2

Mark Walker (Manly Astrophysics)

- Solution State State
 - Reservoir of parent bodies + diffusion into loss-cone
 - Planetary-mass gas clouds are abundant
 - In Active Galactic Nuclei

Abundant in Active Galactic Nuclei

Broad-line clouds "imaged" via X-ray absorption events in NGC1365 (Maiolino et al 2010). Cometary morphology.

Smoothness of Broad Lines requires large numbers of clouds
Scale "comet" numbers up / down for Quasars / Sgr A*

- Solution Lifetime of $G2 \ll Age$ of $Galaxy \rightarrow like a comet$... follow Oort
 - Reservoir of parent bodies + diffusion into loss-cone
 - Planetary-mass gas clouds are abundant
 - In Active Galactic Nuclei
 - In Planetary Nebulae

Abundant in Planetary Nebulae

- "Cometary Knots" in Helix Nebula (esp. O'Dell & Handron 1996)
- Interpreted as photoevaporated flows (Lopez-Martin et al 2001) from dense molecular cores (Huggins et al 1992)
- Matsuura et al (2009) find ~ 4×10^4 knots in H₂

- Solution State State
 - Reservoir of parent bodies + diffusion into loss-cone
 - Planetary-mass gas clouds are abundant
 - In Active Galactic Nuclei
 - In Planetary Nebulae
 - In the Interstellar Medium

Clouds in ISM revealed by radio-wave lensing events

- "Extreme Scattering Events" (Fiedler et al 1987)
 - Plasma-lensing events (Romani, Blandford & Cordes 1987)
 - High pressure ionised gas
- Lens radii ~ few × AU
- Local density ~ few × 10^3 pc⁻³

Light-curve analysis (MW 2007):

- Quasi-spherical lens ∴ self-gravitating neutral cloud underlies ionised gas
- Ram-pressure important ∴ supersonic motion

CSIRO project to find more events ongoing ... (Bannister et al 2014)

Manly Astrophysics

- Solution State State
 - Reservoir of parent bodies + diffusion into loss-cone
- Planetary-mass gas clouds are abundant
 - In Active Galactic Nuclei
 - In Planetary Nebulae
 - In the Interstellar Medium
- Commonality across diverse environments suggests planetary-mass clouds are a fundamental constituent of galaxies
- Models show core+envelope structure due to H₂ snow formation
 - Structures are robust. Masses range from $\sim 10^{-7}$ to $\sim 10^{-1}$ M $_{\odot}$

Modelling clouds as self-gravitating equilibria

(MW & M. Wardle 2014) Solve equations for self-gravitating, hydrostatic fluid in a spherical, equilibrium configuration.

Solid H_2 important for cooling (Pfenniger & Combes 1994), and for the equation-of-state.

Example solution 1: $M = 10^{-5} M_{\odot}$, minimal snowflake content

Manly Astrophysics

Example solution 1: $M = 10^{-5} M_{\odot}$, minimal snowflake content

Example solution 2: $M = 10^{-5} M_{\odot}$, minimal snowflake content

Example solution 2: $M = 10^{-5} M_{\odot}$, minimal snowflake content

Solutions with minimal H_2 snowflake content

- Solution State State
 - Reservoir of parent bodies + diffusion into loss-cone
- Planetary-mass gas clouds are abundant
 - In Active Galactic Nuclei
 - In Planetary Nebulae
 - In the Interstellar Medium
- Commonality across diverse environments suggests planetary-mass clouds are a fundamental constituent of galaxies
- Models show core+envelope structure due to H₂ snow formation
 - Structures are robust. Masses range from $\sim 10^{-7}$ to $\sim 10^{-1}~M_{\odot}$
- Galactic Centre environment modifies characteristics

Environmental Influence on Appearance

e-

 p^{+}

~ 200 km/s

 $\sim 10^{10} \times$

Interstellar

FUV Flux

Local ISM Cosmic-ray heating Conductive evaporation Low mass-loss rate Ram-pressure tail

~ 1 AU e p^+ MNN Interstellar

Galactic Centre Cosmic-ray heating? Photoevaporation High mass-loss rate Ram-pressure + tidal tail

 $\gg 1 \text{ AU}$

~ 2000 km/s

FUV Flux

Summary

- Planetary-mass gas clouds are abundant in AGN, PNe, ISM ...
- Commonality across diverse environments suggests these clouds are a fundamental constituent of the Universe
- Models show robust core+envelope structure with H₂ snow
- Strong FUV field near Sgr A* will inflate clouds and drive winds
- Expect head-tail structure due to ram-pressure and tidal stripping
- G2 naturally interpreted as a "comet"
 - An ordinary gas cloud on an extraordinary orbit