Caustics in Plasma Lensing

Artem Tuntsov (Manly Astrophysics)

Gravity meets Plasma, Kunming

+ATESE/TAILS Team: Keith Bannister, Hayley Bignall, Simon Johnston, Cormac Reynolds, Mas Said, Jamie Stevens, Mark Walker (Manly, CSIRO Marsfield, CSIRO Kensington)

2019/08/20

Plasma lenses in radio spectra

ATESE/TAILS: impossible plasma lenses

- Seen in some compact sources
- Efficiently discovered in spectra
- Come in 2.5 flavours (grrr!?)
 - slow: extreme scattering events, ESEs
 - fast: (extreme) intra-day variables, (x)IDVs
 - faster: hours, IHVs (close screens)
- Problematic plasma physics
- Wealth of data in dynamic spectra
 not just fitting model parameters
 actually reconstructing the lens!

Plasma lenses in radio spectra

ATESE/TAILS: impossible plasma lenses

- Seen in some compact sources
- Efficiently discovered in spectra
- Come in 2.5 flavours (grrr!?)
 - slow: extreme scattering events, ESEs
 - fast: (extreme) intra-day variables, (x)IDVs
 - faster: hours, IHVs (close screens)
- Problematic plasma physics
- Wealth of data in dynamic spectra
 not just fitting model parameters
 actually reconstructing the lens!

Assumptions & conventions

Keep it simple • no gravity • no polarisations Single thin screen • above plasma frequency • small deflections (Born) • electrons advance phase No diffraction/coherence (Fangxi Lin) $\Phi = -\lambda r_{\rho} \overline{N_{\rho}}$ • geometric (ray) optics $\overline{\alpha} = k^{-1} \overline{\partial} \Phi \propto \lambda^2 \overline{\partial} N_o$ • no interference b/w rays Point source

Observables and where they live Frequency dependent lens map $\overline{\alpha}: \ \overline{\theta} \to \overline{\beta} = \overline{\theta} - \lambda^2 \,\overline{\alpha}(\overline{\theta})$ • arbitrary (!) gradient field 0 • all α, κ, γ ... quoted at $\lambda = 1$ Now (β , λ^2) space looks hairy! • bristles curve for λ or v axes • not a proper fibre bundle Ne We observe flux \propto magnification μ • (exc. images wonder w/ VLBI) • known $\mu(\lambda)$ along each bristle Handy for β to be observer position • think of projected pattern Flux is sampled on data cylinder Manly Astrophysics

Observables and where they live Frequency dependent lens map $\overline{\alpha}: \ \overline{\theta} \to \overline{\beta} = \overline{\theta} - \lambda^2 \,\overline{\alpha}(\overline{\theta})$ • arbitrary (!) gradient field \cap • all α, κ, γ ... quoted at $\lambda = 1$ Now (β , λ^2) space looks hairy! • bristles curve for λ or v axes • not a proper fibre bundle Ne We observe flux \propto magnification μ • (exc. images wonder w/ VLBI) • known $\mu(\lambda)$ along each bristle Handy for β to be observer position • think of projected pattern Flux is sampled on data cylinder Manly Astrophysics

Observables and where they live Frequency dependent lens map $\overline{\alpha}: \ \overline{\theta} \to \overline{\beta} = \overline{\theta} - \lambda^2 \ \overline{\alpha}(\overline{\theta})$ • arbitrary (!) gradient field • all α, κ, γ ... quoted at $\lambda = 1$ Now (β , λ^2) space looks hairy! • bristles curve for λ or v axes • not a proper fibre bundle λ^2 We observe flux \propto magnification μ • (exc. images wonder w/ VLBI) • known $\mu(\lambda)$ along each bristle Handy for β to be observer position $\mu(\overline{\theta},\lambda) = \left| \det \left(1 - \lambda^2 \partial_{\overline{\theta}} \overline{\alpha} \right) \right|$ • think of projected pattern Flux is sampled on data cylinder Manly Astrophysics

-11

Observables and where they live Frequency dependent lens map $\overline{\alpha}: \ \overline{\theta} \to \overline{\beta} = \overline{\theta} - \lambda^2 \,\overline{\alpha}(\overline{\theta})$ • arbitrary (!) gradient field • all α, κ, γ ... quoted at $\lambda = 1$ Now (β , λ^2) space looks hairy! • bristles curve for λ or v axes • not a proper fibre bundle λ2 We observe flux \propto magnification μ • (exc. images wonder w/ VLBI) • known $\mu(\lambda)$ along each bristle Handy for β to be observer position $\mu(\overline{\theta},\lambda) = \det\left(1-\lambda^2\partial_{\overline{\theta}}\overline{\alpha}\right)$ • think of projected pattern Flux is sampled on data cylinder Manly Astrophysics

-11

Reconstructing phase screen

Problem:

 $F_{v}(t, v) \rightarrow \mu[\beta(t), \lambda] \rightarrow \alpha(\theta) \rightarrow N_{\theta}(\theta)$ Good news: 2D solution exists •e.g., X-disperse: $\alpha(\theta) = \lambda^{-2}[\theta - \beta(\theta)]$ $\theta_{2} = A\lambda^{2}, \ \theta_{1} = \int_{0}^{\beta} d\beta' \left[\pm \mu \left(\beta', \sqrt{\theta_{2}/A} \right) - 1 \right]$ Bad news: not what we need •ill-posed (non-unique) •unphysical (e.g., A>>1)

Reconstructing phase screen: other way

 $\mathbf{F}_{v}(\mathbf{t},\mathbf{v}) \rightarrow \mu[\beta(\mathbf{t}),\lambda] \rightarrow \alpha(\theta) \rightarrow N_{e}(\theta)$

Our solution: use symmetry – e.g., $N_e(\theta_1, \theta_2) = N_e(\theta_1)$ or $N_e(\theta) = N_e(\theta)$

• sheets of equivalent bristles that cut data cylinder

2

0

 λ^2

Reconstructing phase screen: other way Problem:

 $\mathbf{F}_{v}(t,v) \rightarrow \mu[\beta(t),\lambda] \rightarrow \alpha(\theta) \rightarrow N_{e}(\theta)$

Our solution: use symmetry – e.g., $N_e(\theta_1, \theta_2) = N_e(\theta_1)$ or $N_e(\theta) = N_e(\theta)$

- sheets of equivalent bristles that cut data
- cut lines are `projected bristles'
- they are characteristics of $\alpha(\theta)$: all points along line probe same θ
- known shape $\beta(\lambda)$, known $\mu(\lambda)$ • go along, reap α, κ, γ , repeat

 $\overline{\beta} = \overline{\theta} - \lambda^2 \,\overline{\alpha}$ $\pm \mu(\lambda)^{-1} = 1 - 2\lambda^2 \kappa$ $+ \lambda^4 (\kappa^2 - \gamma^2)$

Reconstructing phase screen: other way Problem:

 $\mathbf{F}_{v}(t,v) \rightarrow \mu[\beta(t),\lambda] \rightarrow \alpha(\theta) \rightarrow N_{e}(\theta)$

Our solution: use symmetry – e.g., $N_e(\theta_1, \theta_2) = N_e(\theta_1)$ or $N_e(\theta) = N_e(\theta)$

- sheets of equivalent bristles that cut data
- cut lines are `projected bristles'
- they are characteristics of $\alpha(\theta)$: all points along line probe same θ
- known shape $\beta(\lambda)$, known $\mu(\lambda)$
- go along, reap α,κ,γ , repeat

Fails when bristles cross:
point to different θ, μ is a sum
Manly Astrophysics

Caustics, multiple imaging

Caustics: everywhere Expected: plasma strengthens as λ^2 • strong at low enough frequency • (if not for source size/diffraction) Ubiquitous: similar patterns in various sources/scales Useful, sometimes indispensable

Caustics: everywhere

Caustics: everywhere

Expected: plasma strengthens as λ^2

- strong at low enough frequency
- (if not for source size/diffraction)

Ubiquitous: similar patterns in various sources/scales

Useful, sometimes indispensable

600

Fold + Concave Source

Caustics: not only interstellar

80

70

Erequency, MHz

30

20

80

70

2HW 60

Ionospheric:

- Fallows+ @ LOFAR
- Koval+ @ Shandong
- Interplanetary:
 - Chhetri+ @ MWA

Spectral caustic in 1D: Definitions 1D lens equation: $\beta(\theta) = \theta - \lambda^2 \,\alpha(\theta)$ θ is critical if all its neighbours project to the same β : $d\beta/d\theta = 0$. Such β is caustic. In 1D, they are points, not curves. In plasma lensing, each θ critical: $\beta'(\theta) = 1 - \lambda^2 \alpha'(\theta) = 0$ at $\lambda^2 = 1/\alpha'$ $\Rightarrow \alpha(\theta)$ defines spectral caustic (line): $\lambda^2(\theta) = \frac{1}{\alpha'(\theta)}, \qquad \beta(\theta) = \theta - \frac{\alpha(\theta)}{\alpha'(\theta)}$

Spectral caustic:

$$\lambda^2(\theta) = \frac{1}{\alpha'(\theta)}, \quad \beta(\theta) = \theta - \frac{\alpha(\theta)}{\alpha'(\theta)}$$

Only increasing sections of $\alpha(\theta)$ make sense ($\lambda^2 > 0$), each section draws its caustic, which

- everywhere tangent to a bristle (bristles start crossing here)
- asymptotes to extrema bristles $(\alpha' \rightarrow 0, \lambda^2 = 1/\alpha' \rightarrow \infty)$
- cusps around inflexion bristles (reaches min λ^2 , turns around)
- does not care of other sections

• measures α and α at each point Manly Astrophysics

Spectral caustic:

$$\lambda^2(\theta) = \frac{1}{\alpha'(\theta)}, \quad \beta(\theta) = \theta - \frac{\alpha(\theta)}{\alpha'(\theta)}$$

Only increasing sections of $\alpha(\theta)$ make sense ($\lambda^2 > 0$), each section draws its caustic, which

- everywhere tangent to a bristle (bristles start crossing here)
- asymptotes to extrema bristles $(\alpha' \rightarrow 0, \lambda^2 = 1/\alpha' \rightarrow \infty)$
- cusps around inflexion bristles (reaches min λ^2 , turns around)
- does not care of other sections

• measures α 'and α at each point $_{\rm Manly \ Astrophysics}$

Spectral caustic:

$$\lambda^2(\theta) = \frac{1}{\alpha'(\theta)}, \quad \beta(\theta) = \theta - \frac{\alpha(\theta)}{\alpha'(\theta)}$$

Only increasing sections of $\alpha(\theta)$ make sense ($\lambda^2 > 0$), each section draws its caustic, which

- everywhere tangent to a bristle (bristles start crossing here)
- asymptotes to extrema bristles $(\alpha' \rightarrow 0, \lambda^2 = 1/\alpha' \rightarrow \infty)$
- cusps around inflexion bristles (reaches min λ^2 , turns around)
- does not care of other sections

• measures α and α at each point Manly Astrophysics

Spectral caustic:

$$\lambda^2(\theta) = \frac{1}{\alpha'(\theta)}, \quad \beta(\theta) = \theta - \frac{\alpha(\theta)}{\alpha'(\theta)}$$

Only increasing sections of $\alpha(\theta)$ make sense ($\lambda^2 > 0$), each section draws its caustic, which

- everywhere tangent to a bristle (bristles <u>start</u> crossing here)
- asymptotes to extrema bristles $(\alpha' \rightarrow 0, \lambda^2 = 1/\alpha' \rightarrow \infty)$
- cusps around inflexion bristles (reaches min λ^2 , turns around)
- does not care of other sections

• measures α and α at each point Manly Astrophysics

Spectral caustic in 1D: Gauge

At every point of spectral caustic: $\alpha = -\frac{d\beta}{d\lambda^2}, \quad \alpha' = \lambda^{-2}$

 $\Rightarrow \alpha(\theta + C_i)$ at each section.

Phase portrait curl statistics?

Works for other parametrisations. For density in physical units:

$$N_{e}'' = \frac{\nu_{f}^{2}}{D_{\text{eff}} r_{e} c^{2}}, N_{e}' = \frac{V_{\text{eff}} \nu_{f}^{3}}{2D_{\text{eff}} c^{2} r_{e}} \frac{dt_{f}}{d\nu_{f}}$$

need screen distance and velocity.

Spectral caustics in 2D **2D** lens equation: $\overline{\beta}(\overline{\theta}) = \overline{\theta} - \lambda^2 \overline{\alpha}(\overline{\theta})$ Locally, $\delta \overline{\beta} = \hat{A} \delta \overline{\theta}, \ A_{ij} = \delta_{ij} - \lambda^2 \frac{\partial \alpha_i}{\partial \theta_i}$ $\alpha(\theta)$ is a gradient, so A is symmetric: $\hat{A} = (1 - \lambda^2 \kappa) \hat{1} - \lambda^2 \gamma \begin{pmatrix} \cos 2\chi & \sin 2\chi \\ \sin 2\chi & -\cos 2\chi \end{pmatrix}$ θ is critical when A is degenerate: 0 $\det \hat{A} = \left[1 - \lambda^2 (\kappa + \gamma)\right] \left[1 - \lambda^2 (\kappa - \gamma)\right] = 0$ \Rightarrow Two spectral caustics surfaces: $\lambda^{2}(\overline{\theta}) = \frac{1}{\kappa(\overline{\theta}) \pm \gamma(\overline{\theta})}, \quad \overline{\beta}(\theta) = \overline{\theta} - \frac{\overline{\alpha}(\theta)}{\kappa(\overline{\theta}) \pm \gamma(\overline{\theta})}$

Spectral caustics are intersections with data cylinder.

Manly Astrophysics

0

Spectral caustics in 2D: surface properties Two independent "big caustics", ±, crossing above (at $\kappa^{-1}\alpha$) $\gamma=0$ line Locally, like 1D spectral caustics: • tangent to bristles at each point • break into sections asymptoting to cones on lines: $\kappa = \mp \gamma$, (κ can be <0) λ^2 • sections can cut each of other • normal vectors our friends (directions, angles, intersections) Globally, need catastrophe theory: • sections consist of smooth leaves **folds** • joined at "bicaustic line" creases cusps • cusp patterns morph above $\delta(\kappa \pm \gamma)=0$ lips/beak-to-beak • $\gamma=0$ line is a metamorphose, too + hyperbolic umbilic Manly Astrophysics

Spectral caustics in 2D: surface properties Two independent "big caustics", ±, crossing above (at $\kappa^{-1}\alpha$) $\gamma=0$ line Locally, like 1D spectral caustics: • tangent to bristles at each point • break into sections asymptoting to cones on lines: $\kappa = \mp \gamma$, (κ can be <0) • sections can cut each of other • normal vectors our friends (directions, angles, intersections) But two, ±, big Globally, need catastrophe theory: caustics can cross 'accidentally", too, • sections consist of smooth leaves fo at $\gamma \neq 0$ • joined at "bicaustic line" creases J~ N • cusp patterns morph love $o(\kappa \pm \gamma)=0$ lips/beak-to-beak • $\gamma=0$ line is a metamorphose, too hyperbolic umbilic Manly Astrophysics

Spectral caustics in 2D: data projection Spectral caustics are big caustic intersection with data cylinder. • folds cut data along smooth lines • can only end at data edges • or break at cusps $D_{\rm eff}(\overline{\alpha}\cdot\overline{e}_{\pm})$ dt • where smooth $d\lambda^2$ $(\overline{v}_{\mathrm{eff}}\cdot\overline{e}_{+})$ $(e_{\pm} \text{ is local orientation of shear})$ • can run parallel to either axis • bounds, but does NOT measure α • varying $v_{\rm eff}$ direction can help • phase portraits can still be useful S

•
$$N_e'' = \frac{\nu_f}{D_{\text{eff}} r_e c^2}$$
 hold

Summary & Outlook

- Spectral caustics are prominent in dynamic spectra
- In high anisotropy (1D):
 - all same shape
 - directly measure $N_e(\theta)$
- In full 2D:
 - have complex, though recognisable, morphologies
 - only measure principal curvatures of $N_e(\theta)$
 - bound, but cannot measure its gradient
- Can we do better?
 - multiple cuts (think repeating FRBs, two+ stations)
 - time domain: universal flux ratios/inversions