Hot stars and scintillators: a new result from ATESE

Mark Walker (Manly Astrophysics)

Overview

- Why is radio-wave propagation interesting?
- The ATESE project: who and what
- Discovery of Intra-Day Variability in PKS1322-110
 - Right next to Spica!
- Another look at IDV in PKS1257-326 and J1819+3845
 - Association with local, hot stars
- Inferences about the circumstellar medium

Why scintillation is interesting A powerful "microscope" for the ionised ISM « Resolution" ~ 10¹¹ cm

- "Sensitivity" ~ 10^{11} cm⁻²
- Usually see low-level flux variations of radio quasars
 - Distributed turbulence throughout Galactic ISM (?)
- Sometimes see large and/or rapid flux variations
 - Extreme Scattering Events (ESEs) plasma lensing
 - Intra-Day Variability (IDV) scattering by plasma microstructure (highly anisotropic)

ATESE: ATCA survey for Extreme Scattering Events

- Keith Bannister (PI), Jamie Stevens, Simon Johnston,
 Hayley Bignall, Cormac Reynolds (CSIRO) radio obs.
 Artem Tuntsov & MW (Manly) theory
- 🔮 Vikram Ravi (Caltech) optical follow-up
- Running since April 2014
- Monthly observations of 10³ compact radio quasars
 - Wide-band spectra (4 8 GHz)
- Intensive follow-up of interesting sources
 - Mainly triggering on weird spectra

First Event: PKS1939-315

PKS 1322-110 : a new IDV

 0.02 deg^2

Spica

PKS1322-110

PKS0405-385 (Lucyna's source)

 $\frac{1}{12}$ (hr)

10

8

6

Manly Astrophysics

 $\left(\right)$

2

F (Jy) 2.0

1.8

1.6

1.4

1.2

PKS1257-326 (Hayley's source)

PKS1257-326 (Hayley's source)

J1819+3845 (Jane's source)

J1819+3845 (Jane's source)

Bright stars in the foreground

PKS1257-326

J1819+3845

PKS1257-326 (Hayley's source)

J1819+3845 (Jane's source)

Lucky coincidences?

Fitting to annual cycle gives:

- 1. Orientation of plasma anisotropy
- 2. Perpendicular velocity component
- 3. Size of scintles \rightarrow line-of-sight distance

Quasar

Scattering plasma

Lucky coincidences?

Quasar

Hot star

Scattering plasma

hot star density = 4×10^{-4} pc⁻³ P = 2.4×10^{-5} (1819-Vega) P = 1.7×10^{-4} (1257-Alhakim)

The environments of hot stars

10⁻³ AU

10² AU

$n_{e} \sim 10 \text{ cm}^{-3}$

10⁵ AU

The environments of hot stars

$N \sim 10^{5}$

Helix Nebula

Total molecular mass $\sim M_{\odot}$ Same for all stars ?

Matsuura, 2009 Matsuura, 100 H2 2.1 MM

Conclusions

IDV caused by plasma around hot, local stars Not attributable to stellar winds Plasma concentrations appear similar to those in Helix In Helix, plasma forms a skin around H₂ globules ... swarms of H₂ globules around local, hot stars Qualifiers "local" and "hot" due to IDV selection bias .: swarms of H₂ globules around all stars Total mass in globules is comparable to stellar mass