Hydrogen snow clouds and the B[e] phenomenon

Mark Walker (Manly Astrophysics)

Manly Astrophysics

Making H₂ snow requires cold, dense gas

• $P = P_{sat} \gg P_{ism}$: self-gravitating (Pfenniger & Combes 1994)

Snow clouds : low masses & large radii

Spherical Self-gravitating Hydrostatic equilibria 75% H₂, 25% He No Metals Minimal snow content (MW & Wardle 2016)

High density, robust structures Example with $M = 10^{-4} M_{\odot}$

Manly Astrophysics

Convection transports heat inwards

Buoyant instability, but entropy increases outwards

Manly Astrophysics

Snow clouds are very dim

 Baryonic Dark Matter
 Maybe lots of them
 Vigorous heating is disruptive
 Translucent in optical

- But FUV is absorbed
 - Rapid destruction near hot stars

Snow cloud near a (hot) star

*

Shocks

Photoionisation

Manly Astrophysics

FUV

Wind

Cometary globules in the Helix Nebula

Matsuura⁺⁺ 2009 H₂ 2.2 μ m

O'Dell + Handron 1996 [O III] Circumstellar manifestations : 1. High eccentricity orbit

- High mass-loss rate near periastron
 - Regular outburst behaviour
- Huge tides : rapid circularisation of orbit
- Hydrodynamics of tail influenced by gravity, stellar wind, and radiation pressure (on dust)

Circumstellar manifestations : 2. Low eccentricity orbit

- Cometary spiral
- Steady mass-loss
- Aspect-dependent periodic variations in :
 - Photometry
 - Emission-line velocity profiles
 (cf. V/R variations in Be star emission lines)

Dusty "pinwheels" in Wolf-Rayet systems Tuthill⁺⁺ 2008 WR104 3 µm continuum

Manly Astrophysics

Summary

Snow clouds form a distinct new class of astronomical object Planetary masses, but large radii 5 Very dim (baryonic dark matter) : maybe lots of them Mechanically robust, but thermally fragile Intense $FUV \rightarrow$ thermal disruption via dusty wind Emission lines from photoionisation and shocks Cloud mass-loss + orbital motion \rightarrow cometary morphology ٩ High eccentricity orbits \rightarrow transient tails Low eccentricity orbits \rightarrow steady, revolving spirals Generic to all spectral types & evolutionary states Maybe relevant to various "stellar" peculiarities Most obvious near hot, luminous stars \rightarrow Be and B[e]?